确定常数a,使向量组α1=(1,1,a),α2=(1,a,1),α3一(a,1,1)可由向量组β1=(1,1,a)。β2=(-2,a,4),β2=(-2,a,a)线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
举一反三
- 设向量组{α1,α2,α3}线性无关,向量组{β1,β2,β3}可由向量组{α1,α2,α3}线性表出,且β1=α1+4α2+α3,β2=2α1+α2-α3,β3=α1-3α3,则向量组{β1,β2,β3}线性______.
- 若向量β可由向量组α1、α2、α3线性表示,则向量组β、α1、α2、α3必( )
- 设向量组 可由向量组α1,α2,...αm线性表示,但不能由向量组,(I)α1,α2,...αm-1 线性表示,记向量组(II):α1,α2,...αm-1β则(b )
- 设向量组Ⅰ:α1,α2,…,αr可由向量组Ⅱ:β1,β2,…,βs线性表示,则( )
- 设向量β可由向量组α1,α2,…,αs线性表出,但β不能由向量组α1,α2,…,αs-1线性表出.证明:秩(α1,α2,…,αs-1,αs)=秩(α1,α2,…,αs-1,β).