• 2022-06-12
    ∫arctanxdx=( )
    A: xarctanx-1/2ln(1+x²)
    B: xarctanx-1/2ln(1+x²)+c
    C: xarctanx-1/2arctanx+c
    D: xarctanx-1/2arctanx
  • B

    内容

    • 0

      当x→0时,下列变量为无穷小量的是( ) A: sin(1/x) B: cos(1/x) C: ln(1+x^2) D: e^(1+x)

    • 1

      已知\( y = \ln (1 + {x^2}) \),则\( y' \)为( ). A: \( { { 2x} \over {1 + {x^2}}} \) B: \( {x \over {1 + {x^2}}} \) C: \( {1 \over {1 + {x^2}}} \) D: \( { { {x^2}} \over {1 + {x^2}}} \)

    • 2

      函数$f(x)=\ln \ln x$的导数是( )。 A: $\frac{1}{x}$ B: $\frac{1}{{{x}^{2}}}$ C: $\frac{1}{\ln x}$ D: $\frac{1}{x\ln x}$

    • 3

      设函数$f(x)=\ln (1+x)$.若$f(x)=x\ {f}'(\xi )$ 且 $\xi$介于$0$和$x$之间,则$\underset{x\to 0}{\mathop{\lim }}\,\frac{\xi }{x}=$ A: $1$ B: $2$ C: $\frac{1}{2}$ D: $-\frac{1}{2}$

    • 4

      \(\int { { {\sec }^{3}}xdx}\)=( ) A: \(\frac{1}{2}\sec x\cot x-\frac{1}{2}\ln \left| \sec x+\tan x \right|+C\) B: \(\frac{1}{2}\sec x\tan x+\frac{1}{2}\ln \left| \sec x+\tan x \right|+C\) C: \(-\frac{1}{2}\csc x\tan x+\frac{1}{2}\ln \left| \sec x-\cot x \right|+C\) D: \(-\frac{1}{2}\sec x\tan x-\frac{1}{2}\ln \left| \csc x+\tan x \right|+C\)