A: xarctanx-1/2ln(1+x²)
B: xarctanx-1/2ln(1+x²)+c
C: xarctanx-1/2arctanx+c
D: xarctanx-1/2arctanx
举一反三
- 已知f’(x)=,且f(1)=1,则f(x)等于()。 A: ln(1+2lnx)+1 B: 1/2ln(1+2lnx)+1 C: 1/2ln(1+2lnx)+1/2 D: 2ln(1+2lnx)+1
- 已知f´(x)=1/[x(1+2lnx)],且f(x)等于() A: ln(1+2lnx)+1 B: 1/2ln(1+2lnx)+1 C: 1/2ln(1+2lnx)+1/2 D: 2ln(1+2lnx)+1
- 已知函数$y= \ln (1+ x) $,则$y''(x) =$( )。 A: $\frac{1}{(1+x)^2}$ B: $-\frac{1}{(1+x)^2}$ C: $-\frac{1}{1+x}$ D: $\frac{1}{1+x}$
- (arctanx)'=( ) A: 1/(1+x^2) B: 1/(1-x^2)
- 计算∫(-1到1)[(x的绝对值)ln(x+√(1+x^2)dx]
内容
- 0
当x→0时,下列变量为无穷小量的是( ) A: sin(1/x) B: cos(1/x) C: ln(1+x^2) D: e^(1+x)
- 1
已知\( y = \ln (1 + {x^2}) \),则\( y' \)为( ). A: \( { { 2x} \over {1 + {x^2}}} \) B: \( {x \over {1 + {x^2}}} \) C: \( {1 \over {1 + {x^2}}} \) D: \( { { {x^2}} \over {1 + {x^2}}} \)
- 2
函数$f(x)=\ln \ln x$的导数是( )。 A: $\frac{1}{x}$ B: $\frac{1}{{{x}^{2}}}$ C: $\frac{1}{\ln x}$ D: $\frac{1}{x\ln x}$
- 3
设函数$f(x)=\ln (1+x)$.若$f(x)=x\ {f}'(\xi )$ 且 $\xi$介于$0$和$x$之间,则$\underset{x\to 0}{\mathop{\lim }}\,\frac{\xi }{x}=$ A: $1$ B: $2$ C: $\frac{1}{2}$ D: $-\frac{1}{2}$
- 4
\(\int { { {\sec }^{3}}xdx}\)=( ) A: \(\frac{1}{2}\sec x\cot x-\frac{1}{2}\ln \left| \sec x+\tan x \right|+C\) B: \(\frac{1}{2}\sec x\tan x+\frac{1}{2}\ln \left| \sec x+\tan x \right|+C\) C: \(-\frac{1}{2}\csc x\tan x+\frac{1}{2}\ln \left| \sec x-\cot x \right|+C\) D: \(-\frac{1}{2}\sec x\tan x-\frac{1}{2}\ln \left| \csc x+\tan x \right|+C\)