设f(x)在[0,1]连续,在(0,1)可导且f’(x)<0(x∈(0,1)),则()
A: 当0<x<1时∫0xf(t)dt>∫01xf(t)dt
B: 当0<x<1时∫0xf(t)dt=∫01xf(t)dt
C: 当0<x<时∫0xf(t)dt<∫01=xf(t)dt
D: 以上结论均不正确.
A: 当0<x<1时∫0xf(t)dt>∫01xf(t)dt
B: 当0<x<1时∫0xf(t)dt=∫01xf(t)dt
C: 当0<x<时∫0xf(t)dt<∫01=xf(t)dt
D: 以上结论均不正确.
举一反三
- 设f(x)在[0,+∞)上非负连续,且f(x)∫0xf(x一t)dt=2x,则f(x)=__________.
- 设f(x)在(0,+∞)二阶可导,满足f(0)=0,f(x)在x=0处可导,f"(x)<0(x>0),又设b>a>0,则a<x<b时恒有 A: af(x)>xf(a). B: bf(x)>xf(b). C: xf(x)>bf(b). D: xf(x)>af(a).
- 设函数f(x)在区间(0,+∞)内具有二阶导数,满足f(0)=0,f"(x)<0,又0<a<b,则当a<x<b时恒有( ) A: af(x)>xf(a) B: bf(x)>xf(b) C: xf(x)>bf(b) D: xf(x)>af
- 设f(x)连续,且∫01[f(x)+xf(xt)]dt=1,则f(x)=__________.
- 设f(x)是连续函数,F(x)=∫(0,x)f(t)dt