设f"(ex)=1+x,则f(x)=_________.
举一反三
- 设f(x)=ex,则∫f′(x)dx=_______.设f(x)=ex,则∫f′(x)dx=_______.
- 设f(x)=ex,则∫f′(x)dx=_______.
- 设函数y=f(ex)ef(x),其中f(x)可导,则dy=()。 A: ef(x)[exf'(x)+f'(ex)]dx B: ef(x)[exf'(ex)+f(ex)f'(x)]dx C: ef(x)[f'(ex)+f(ex)f'(x)]dx D: ef(x)[f'(ex)+exf(ex)f'(x)]dx
- 设f’(lnx)=1+x,则f(x)=()。
- 设f(x)在[0,+∞)可导,且f(0)=0,并有反函数g(x),若∫0f(x)g(t)dt=x2ex,则f(x)等于( ). A: (2+x)ex一3 B: (2+x)ex+C C: (1+x)ex一1 D: (3+x)ex+C