若函数$f(x)$在$x=x_0$处连续,那么$|f(x)|$和$f^2(x)$在$x=x_0$处也连续。
若函数$f(x)$在$x=x_0$处连续,那么$|f(x)|$和$f^2(x)$在$x=x_0$处也连续。
若 \(f(x)\) 在点 \({x_0}\) 连续,则 \(f(x)\) 在 \({x_0}\) 处一定可导 ( ) .
若 \(f(x)\) 在点 \({x_0}\) 连续,则 \(f(x)\) 在 \({x_0}\) 处一定可导 ( ) .
已知函数\(f(x)\)在\(x = {x_0}\)处连续是函数在\(x = {x_0}\)处可导的充要条件.
已知函数\(f(x)\)在\(x = {x_0}\)处连续是函数在\(x = {x_0}\)处可导的充要条件.
若极限$\lim_{x\rightarrow x_0} f(x)$存在,则在$x_0$处函数必有界 A: 正确 B: 错误
若极限$\lim_{x\rightarrow x_0} f(x)$存在,则在$x_0$处函数必有界 A: 正确 B: 错误
\(曲面z=f(x,y)在(x_0,-y_0)的切平面方程是(\,)\) A: \[z=f(x_0,y_0)+f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0)\] B: \[z=f(x_0,-y_0)-f_x(x_0,-y_0)(x-x_0)-f_y(x_0,y_0)(y+y_0)\] C: \[z=f(x_0,-y_0)+f_x(x_0,-y_0)(x-x_0)-f_y(x_0,-y_0)(y+y_0)\] D: \[z=f(x_0,-y_0)+f_x(x_0,-y_0)(x-x_0)-f_y(x_0,-y_0)(y-y_0)\]
\(曲面z=f(x,y)在(x_0,-y_0)的切平面方程是(\,)\) A: \[z=f(x_0,y_0)+f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0)\] B: \[z=f(x_0,-y_0)-f_x(x_0,-y_0)(x-x_0)-f_y(x_0,y_0)(y+y_0)\] C: \[z=f(x_0,-y_0)+f_x(x_0,-y_0)(x-x_0)-f_y(x_0,-y_0)(y+y_0)\] D: \[z=f(x_0,-y_0)+f_x(x_0,-y_0)(x-x_0)-f_y(x_0,-y_0)(y-y_0)\]
若幂级数\(\sum\limits_{n = 1}^\infty { { a_n}} {x^n}\)在\(x = {x_0}\)处发散,则该级数的收敛半径满足( )。 A: \(R = \left| { { x_0}} \right|\) B: \(R < \left| { { x_0}} \right|\) C: \(R > \left| { { x_0}} \right|\) D: \(R \le \left| { { x_0}} \right|\)
若幂级数\(\sum\limits_{n = 1}^\infty { { a_n}} {x^n}\)在\(x = {x_0}\)处发散,则该级数的收敛半径满足( )。 A: \(R = \left| { { x_0}} \right|\) B: \(R < \left| { { x_0}} \right|\) C: \(R > \left| { { x_0}} \right|\) D: \(R \le \left| { { x_0}} \right|\)
设函数\(f(x)\)与\({\rm{g}}(x)\)在点\({x_0}\)连续,则函数\(\varphi (x) = max\{ f(x),g(x)\} \)在点\({x_0}\)处也连续。( )
设函数\(f(x)\)与\({\rm{g}}(x)\)在点\({x_0}\)连续,则函数\(\varphi (x) = max\{ f(x),g(x)\} \)在点\({x_0}\)处也连续。( )
函数\(f\left( x \right)\)在点\(x = {x_0}\)连续是在点\(x = {x_0}\)处可微的( )。 A: 充要 B: 充分 C: 必要 D: 无关
函数\(f\left( x \right)\)在点\(x = {x_0}\)连续是在点\(x = {x_0}\)处可微的( )。 A: 充要 B: 充分 C: 必要 D: 无关
\(f(x)\)在\(x = {x_0}\)处连续是\(f(x)\)在\(x = {x_0}\)处可导的( )条件. A: 充分不必要 B: 必要不充分 C: 充要 D: 既非充分又非必要
\(f(x)\)在\(x = {x_0}\)处连续是\(f(x)\)在\(x = {x_0}\)处可导的( )条件. A: 充分不必要 B: 必要不充分 C: 充要 D: 既非充分又非必要
如果函数$f(x)$在$x_0$处连续, 那么它在$x_0$处也可导. A: 正确 B: 错误
如果函数$f(x)$在$x_0$处连续, 那么它在$x_0$处也可导. A: 正确 B: 错误