• 2022-05-26
    如图所示,半径为[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]的乙球的球心在半径为[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]的定球面甲球上。试求乙球夹在甲球内面部分曲面[tex=0.786x1.0]M/b3Tm4TfVvVYa87wz/CuQ==[/tex]的表面积[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]的最大值。[img=189x190]177046c3ef1f5e8.png[/img]
  • [b]解[/b]       【分两步骤;先求[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex],在求[tex=2.0x1.214]XXRie2a1or8Lgax7chDFMg==[/tex] .】如图建立坐标系,原点在甲球球心,[tex=0.5x0.786]gdMkE6SnyZedYLxpUxdkaQ==[/tex]轴过乙球球心,则两球交线的方程为:[tex=10.071x3.357]fnpmC2J6JmQBLyo5NmGAz89fzajrsY2GMIIvBoKtXjOS8ZnOeKVOeDL8WKzedCpXR1OwbC/Gqb7n2f6d8rtOO8b1t23IQCweg/aenVyPcEAp+7laejujzno9/9nOPshzPMfsJYkpHdmLuOJDPvuyJg==[/tex]即[tex=11.786x5.5]fnpmC2J6JmQBLyo5NmGAz4xn6ZlyqeIGudXrLnUPV4EqbNjNR9MKWkdnL7aE6GqplG7ZGsQTca167syCPp9/Ddi2n0sBOH54PTcKek1cnbovYSlnqG1h5sDkHq/rLUzts4LuUw6Sjb9BjhkGWMxV6YtnsCGMRl+6Jz+mLvttZMk=[/tex]此交线在[tex=1.857x1.214]Bl3ki5VEsSE+maJQ9GYqhw==[/tex]面上的投影域[tex=1.571x1.286]UjgWteLDig5ak9vtRQWlvw==[/tex]:[tex=10.286x2.5]DuMOJW/S/GnRx/nZatcEl49hXo2bdilhebiDKbXQ7GsOEeyru/Kr2/GKWAavtGtrSIbE4IyWHqKNjT2dXkFMF1z8Nlq/6rgQ5SzyCJyQgBA=[/tex][tex=2.571x1.357]jn4pf6nMt9+WFTKF1OVihw==[/tex]由于在甲球内部乙球面[tex=0.786x1.0]M/b3Tm4TfVvVYa87wz/CuQ==[/tex]上的点满足:[tex=9.071x1.571]Lhh6VTmf/+bxjFq9DQj5rrIVdIh8jXw1Nqt4qrN1Co5LQMygzdcpsUWxXijh5S4y[/tex]而[tex=8.071x2.857]gMzNwa3ZpcyEWeBm3XFVW1Ru5quWRelxDJevTKOrI7zdAMKGQnV764/6cxj0yTHJAgbEm0RrZ+Sj/Ipk/PNCt2+SIH9BqhhLU4j8QFep5kw=[/tex], [tex=9.0x2.857]488bwmWSt1LsiN27rb9uFuqVZkOhiIAltGLpgiPb5lfGO/Ku+GJe+I1ybgGLWObpS8HM5MvNlr9X2xUo9sUHgwcQLV/ERT4au4K8TKJDMlw=[/tex]所以[tex=0.786x1.0]M/b3Tm4TfVvVYa87wz/CuQ==[/tex]上的面积元素[tex=1.929x1.0]EUXHF1RBYW5L/hahnc8fiw==[/tex][tex=12.071x3.357]L+ilpN+B6ecLS2WmyOB3GQN674wMTdNMzXte/CboBi9quZIBehiehL03QbDsXnr6coJyp2W4cEycGyahzIRPfQeDMifPmibPI22GdZGm7vq8magSX1c1ddKDmP4M/OoWmM0Lq/KTnnIaBLZ+6JIStzo7HHROkhFIosBeBvUxjKY=[/tex]   [tex=15.214x3.357]QeDk8Ek8/sEAIl/6SAztVTT4FMjXTy49cZU5BzkcDLX/Wx7LFPw6b+eAbiXwjPZWZ1C/2nCYxN1I8W986Llch1ATdr9KCzg9Isx01MI/toOgzWQlBLKKs5VqOY2mNrhJ[/tex]   [tex=8.857x2.571]xvPTMtZWcXZABpJyTpLwlsd1pbLn71RzsSkzRyNb8PyQwkt8cqtPGT9lmlDprhFv[/tex][tex=7.429x3.357]JqD/C6Zu721wGmbikc2iYLZ1sepsSQ4n/ojIvlcBsFNrKOnQ0L/GcY3UIOJ2OGa4[/tex][tex=9.857x3.571]cT9216y3byw2WtxaOaiH/xCxjz5E3zjkEsUau6TyEB/YnAlzpm3JTi/HJOXCCklS2nKktMnrKVnuOHqCujM5H3S4zqQacr5TguJxCrrS1Fs=[/tex]        [tex=15.714x3.214]ZZGNBRWYRGNIfGEJSDuHTl8LdYKCLll7s6Zrj3xlUGopCg3dbRDnrHOFsBtVBOaD4pBwHY9VNHgUA9UvQsR9CUaYXUwc2gFRJ7xG9/yInYSR+lObDdIl3uvr9SwNGanaDoz3uxMrsYwqdBknHILKoMJHKM63hxLI/f42GCXE6oI=[/tex]        [tex=13.0x2.857]Yd38Gc4stnqBmQWG/at3b1tzrmKMHdYv5jNjlvJVd/D/NSIDTnWarJoJoy/xYcwL1m8/q40df26coytetdiJZbT3I84eeuu+tJ2ao/VPQJojj8GXC3RJKfThRTJ3h/RahtApUuV2W8v3JJskOp3QNQ==[/tex]       [tex=6.857x2.786]HK7GflzmeyElr3X3jweaM4NndduhiP5I9rTOTw8XKyoEWFZfWrsMtnhNkVC+hzt7[/tex] .这里[tex=0.786x1.0]as0RCzgUx1oS48cKHRAVVg==[/tex]是定值,[tex=3.286x1.357]KCWl4deljHI7/PnKNF0Vng==[/tex],下面求[tex=2.0x1.214]XXRie2a1or8Lgax7chDFMg==[/tex],令[tex=9.286x2.357]5cnOMaD96bYExCE16iYzZRNPKXH03ZuZmG/q7b6lozdXH+temTfberZnsCbqVHHB[/tex][tex=5.0x2.357]H67rntREav4hIOeX5yrpnu3zX0CEYClMXWP86MQQBgM=[/tex],得唯一驻点;根据问题的实际意义,[tex=2.0x1.214]XXRie2a1or8Lgax7chDFMg==[/tex]存在,所以当[tex=3.071x2.357]44NaIYxJU1Cc5xsRw7JWcw==[/tex]([tex=3.714x1.071]oaiuiqJcd71LDp74yv3YIg==[/tex])时,[tex=0.786x1.0]M/b3Tm4TfVvVYa87wz/CuQ==[/tex]的表面积最大,且[tex=2.714x1.214]6iz1xbj88b3nvC5AA0IkGQ==[/tex][tex=11.429x2.786]5anBlgkZt0zgZENGnwZDn3q+NHpJdc4Y9QqLt3HqoYWb2nJomq1je+Hd8zxc7E7TXsGLSuzqkeFldN47zg62U5m19dNtsOQ0EnEsENKqP78=[/tex][tex=3.857x2.357]W2kVyIUcPryky8bFYPdNs24oDFSgzKRgqnBMNn7l3j0=[/tex] .

    举一反三

    内容

    • 0

      求半径为[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex],高为[tex=0.643x1.0]uPu/UBwxTDghY6MHYDLmcA==[/tex]的球冠的表面积.

    • 1

      设球面 [tex=1.429x1.357]KI9KXQcItSHvmwsuM46ypA==[/tex] 的半径为 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]且球心位于给定球面 [tex=9.214x1.5]JfMnpkdfUBckNje06oWbkzug78fPmO20YuK3QhO0HeM=[/tex] 上,求 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的值使得[tex=1.429x1.357]saI7lvlD5ec607SEE1NvFg==[/tex]位于给定球面的内部的面积最大.

    • 2

      如图[tex=1.357x1.357]TWUgLpDrEXIKICMuiEQPjw==[/tex]所示,一半径为[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的导体球壳,球内部距离球心为 [tex=3.929x1.357]m/k8pZOXP1zyfeCI0nq9jg==[/tex] 处有一点电荷[tex=0.5x1.0]jedlXyMYwmfVwxRj2j9sSw==[/tex], 求当球壳接地时球内的电场强度和电势[img=239x178]17945c8b915522a.png[/img].

    • 3

      半径为 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的导体球, 带有电荷 [tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex], 球外有一均匀电介质的同心球壳, 球壳的内外半径 分另别为 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 和 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex], 相对介电数为 [tex=0.786x1.0]UGTb3mBG6stcsgF+b5KCcN3tGbJwtAkNMdlfEq83jrg=[/tex], 求:求离球心[tex=0.786x1.0]5SeCOJOzMwSNbX8MGx2Qsg==[/tex] 为[tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex] 处的电势[tex=0.714x1.0]UsTt0JMISB2vmq9eVGUHdA==[/tex]

    • 4

      甲、乙两袋内均有2个白球和2个黑球,从甲、乙两袋中各取1球,设事件[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]为“甲袋中取到白球”,事件[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]为“乙袋中取到黑球”,事件[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]为“两袋中取到同色球”,试证事件[tex=4.286x1.286]bbjSq6zDezEVkpU1l4EZhg==[/tex]两两独立但不相互独立.