举一反三
- 以波长为[tex=3.286x1.0]buRjslE25bJ3XSQsyacAXg==[/tex]的X射线照射岩盐晶体,实验测得[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]射线与晶面夹角为[tex=1.786x1.0]YQdg6U1QSxu+0ZK1+i4U2w==[/tex]时获得第一级反射极大.如以另一束待测[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]射线照射,测得[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]射线与晶面夹角为[tex=2.214x1.071]FhClbEqjJSaEGWv9iQSFnw==[/tex]时获得第一级反射光极大,求该[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]射线的波长.
- 以波长为 [tex=3.286x1.0]J/V+Q09NwFiqrEjU1+VFJg==[/tex] 的 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 射线照射岩盐晶体,实验测得 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 射线与晶面夹角为 [tex=2.214x1.071]gK4dS/FvaXDhAALnmNEpSQ==[/tex] 时获得第一级反射极大. 求: (1) 岩盐晶体原子平面之间的间距 [tex=0.571x1.0]QDHYLzpRIwhOrWBqGonCgg==[/tex] 为多大? (2) 如以另一束待测[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 射线照射,测得 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 射线与晶面夹角为 [tex=2.214x1.071]Z7TZuEvIvibE4avKzch+og==[/tex] 时获得第一级反射光极大,求该 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 射线的波长.
- 已知连续型随机变量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的概率密度为[tex=11.286x2.429]U852yuhDf+y85IsGYXc4POR8uWvaHKELPrAqmR+nmZG8JwQvH0foTJhPAGSLnBQXqh5/UNFfVZeaD9Byq9v1KtCDtifjYmrT7J5EbhwNU4c=[/tex]求:(1)[tex=0.571x1.286]mRKL/orzOudCEARA8qn3Kw==[/tex];(2)[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的分布函数[tex=2.071x1.286]QnT5Ukq2Ukk4CB2YYrq4eQ==[/tex];(3)[tex=5.429x1.286]gXKUDxSisNFST4SGeDeIwg==[/tex]。
- 设随机变量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]都服从[tex=2.143x1.286]dboSCjP3Fn5+xkkJFCNE+A==[/tex]分布,证明: “[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]不相关”与“[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]独立”等价.
- 设随机变量 [tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex] 服从二项分布,已知 [tex=8.857x1.286]i2Z5Uf6DCEKk3kUuqFJqMBMPcT40TtxFiK2OLjQwcas=[/tex] , 求 [tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex] 的分布律
内容
- 0
设矩阵[tex=10.286x3.929]r+tiAx6ClSaeP7cZbqpjmU2jA8OfocZwi1HjRH+Ylr2XvckDNXltPwV5JFJ+Ly07gOR43TRiiKsRQVHTf91QqbOE+NRimz/nYtjLvyaMLTEnfTdtd9wtRT5d840Dj9z+[/tex],矩阵[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]满足[tex=7.643x1.286]mdLdzaMkJ0bZ1Q+PvHfNXvayLD3A1ZlECG2+4G0qDxY=[/tex],试求矩阵[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]。
- 1
某厂销售收入[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]与利润[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的统计资料如表所示。[img=631x178]1790c8ce45dac14.png[/img]若[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]与[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]有线性关系,试求出[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]关于[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的线性回归方程。
- 2
设[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]是两个相互独立的随机变量,[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]在[tex=2.929x1.286]kvrkODQf0L3CKREOEdSkuA==[/tex]上服从均匀分布,[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的概率密度为[tex=10.571x2.429]DRJq+C1mHjswrEZ8FtvX7HNGAPrBLJ6gzRGG2ilTN7MM55jZEydQmT0AUl0Qb5hAT5k9ols3J/KpgflWFdX4TQ==[/tex],求:(1)[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的联合概率密度;(2)[tex=4.714x1.286]dbgFLPFxgdKKXnbc/gnthjs3iie6rgn/UEwrXH27vHI=[/tex] .
- 3
设随机变量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的概率密度为[tex=9.214x2.429]93cVZGWw3lMgVkyi6VSoKh50pCatLfwEhBI5Mcu8cetbI0pCEX/JZxnvKhEuybgm+iLMgPuF5EM2U4IiW21lBg==[/tex]设[tex=2.071x1.286]QnT5Ukq2Ukk4CB2YYrq4eQ==[/tex]是[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的分布函数,求随机变量[tex=4.429x1.286]lp9MWWLA00sQp0WbJ9dswA==[/tex]的密度函数。
- 4
随机观察一个总体[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex],得到一个样本容量为4的样本值:[tex=6.0x1.286]/fqudzuAaVkG1raEQ4neirileu0Mcm2abu6uavBbdpc=[/tex]求[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的经验分布函数.