设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的概率密度为[tex=8.929x3.643]BTeyLq0XT+/djvCqLM2VYZXWtru8PXREg43OtwDtUYeokmIbznRTHsLmfqpGp98mYnlhOzz+W0sGjDMonpqZ9g==[/tex],求[tex=3.143x1.357]wq/g+lU/5hd4wBPTj2ogiQ==[/tex]的概率密度。
举一反三
- 设二维随机变量的联合概率密度函数为:[tex=15.929x2.429]a9neBZVmd3fG0ctvwI5Oxjq4tahRNUHDFWrzGhfY3Q0cjRAwaIowsKdF4kv0YlI7cz3ff38MqPwC8cqj7rmFdXzCqzx6ku/IL/JGj3cqUgA=[/tex] 求:随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 至少有一个小于 2 的概率.
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率密度为 : [tex=10.357x2.5]D7bc2+eUwrrbwGCdv8wBHqSGNi2eUimJPhHvHDm2CRQIB0JsD/yM1xJWLrcsKlMCcd5OnLoQn8mUkkof5ma5/A==[/tex], 求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的期望值与方差。
- 已知随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率密度为[tex=13.0x2.357]nHHN4pLpj1G1uhQpyLUatreMse16BhxCX+nm8cZ5nxW1R+KIjomlLFfyrFplv9mykQ0cFIpaQRbRTlU90WEwNA==[/tex]求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的分布函数.
- 设连续型随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率密度为[tex=12.857x2.429]U8EmrNdvLYP7VnO9GCL0WKC9lw90KXXShABMLxBUPz+883V6ZlmOKYenQdRp5qeYe2K4EeF5ruQqhPOElrvMWA==[/tex],求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的数学期望与方差.
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 以概率 1 取值为 0,而 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是任意的随机变量,证明 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立.