用归谬法证明没有有理数[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]使得[tex=4.714x1.357]ICk8CwgWNxZ9Fj0hPMsuow==[/tex]。
举一反三
- 证明两个有理数的和是有理数。(注意如果这里要包含隐含量词,我们要证明的定理就是:“对于每个实数[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]和每个实数[tex=0.5x0.786]ICKY+F5VdoSQrRn/wUUOyw==[/tex],如果[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]和[tex=0.5x0.786]ICKY+F5VdoSQrRn/wUUOyw==[/tex]是有理数,则[tex=1.714x1.071]Hl/jgmhaYDAtk3SA4me73w==[/tex]是有理数。)
- 证明:秩等于[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]的对称矩阵可以表成[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]个秩等于 1 的对称矩阵之和。
- 证明:秩等于[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]的对称矩阵,可以表示成[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]个秩等于1 的对称矩阵之 和.
- 找出不全为零的三个有理数[tex=0.571x0.786]7G1MINzwputr5mgALyjQfA==[/tex],[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex],[tex=0.5x0.786]EL0hSqs6jZBGdsmH7TMShQ==[/tex](即[tex=0.571x0.786]7G1MINzwputr5mgALyjQfA==[/tex],[tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex],[tex=0.5x0.786]EL0hSqs6jZBGdsmH7TMShQ==[/tex]中至少有一 个不是 0),使得[tex=18.643x1.357]KyXXoTQg7oYN9VhCCaNIRxTyt0RSmAxNq0orMlKH1Luyp7BE5JHnaIjEvpSd3+kP[/tex]
- 证明:把[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]个1和[tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex]个0排成一行[tex=4.5x1.357]hM7FEXGknTsi5Ydj11xNIQ==[/tex],使得没有两个1是相邻的排列数为[tex=4.286x1.357]Az1kYlYVDA+8aEvaKKWTRA==[/tex].