若F(x)为f(x)的原函数,则()也为f(x)的原函数
A: F(x)+2
B: F(x+2)
C: 2F(x)
D: .F(2x)
A: F(x)+2
B: F(x+2)
C: 2F(x)
D: .F(2x)
举一反三
- 若函数$f(x)$具有二阶导数,且$y=f({{x}^{2}})$,则$y'' =$( )。 A: $f'' ({{x}^{2}})$ B: $2f'’ ({{x}^{2}})$ C: $2f’ ({{x}^{2}})+4{{x}^{2}}f’' ({{x}^{2}})$ D: $4{{x}^{2}}f’ ({{x}^{2}})+2f'' ({{x}^{2}})$
- 已知\( y = {f^2}(x) \),假设\( f(u) \)二阶可导,则 \( y'' \)为( ). A: \( 2{[f'(x)]^2} + 2f(x)f'(x) \) B: \( 2[f'(x)] + 2f(x)f''(x) \) C: \( 2{[f'(x)]^2} + 2f(x)f''(x) \) D: \( 2{[f'(x)]^2} + f(x)f''(x) \)
- 设\( f(x) \)的一个原函数为\( F(x) \),则\( \int {f(2x)dx} = \)( ) A: \( F(2x) + {\rm{ }}C \) B: \( {1 \over 2}F(2x) + {\rm{ }}C \) C: \( F({x \over 2}) + {\rm{ }}C \) D: \( 2F({x \over 2}) + {\rm{ }}C \)
- 已知\( y = f({x^2}) \),假设\( f(u) \)二阶可导,则\( y'' \)为( ). A: \( 4{x^2}f''({x^2}){\rm{ + }}2f'({x^2}) \) B: \( {x^2}f''({x^2}){\rm{ + }}2f'({x^2}) \) C: \( 4{x^2}f''({x^2}){\rm{ + }}f'({x^2}) \) D: \( {x^2}f''({x^2}){\rm{ + }}f'({x^2}) \)
- 若f″(x)存在,则函数y=ln[f(x)]的二阶导数为:() A: (f″(x)f(x)-[f′(x)]<sup>2</sup>)/[f(x)]<sup>2</sup> B: f″(x)/f′(x) C: (f″(x)f(x)+[f′(x)]<sup>2</sup>)/[f(x)]<sup>2</sup> D: ln″[f(x)]·f″(x)