[tex=1.786x1.357]wdWhVMWkpicynIXoLVTBow==[/tex]的正次数多项式若是不可约元,一定是本原多项式.
举一反三
- 令[tex=2.5x1.214]GJD7QHyrtuvcfBXfd5iSwg==[/tex]是仅含两个元素的域[tex=1.786x1.357]DpXALeWBl8+QhoNGSoieqQ==[/tex]是[tex=0.643x1.0]J+LW/0i6Fe+lWEmBUgT8zg==[/tex]上一 元多项式环.找出[tex=1.786x1.357]DpXALeWBl8+QhoNGSoieqQ==[/tex]中一切三次不可约多项式
- 多项式[tex=2.643x1.357]i+VxqnE17KYcKjLCA4F+Sg==[/tex]是[tex=2.143x1.357]dWatJMLI7pN/xzYgReR9Ug==[/tex]中所有次数整除[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]的不可约首 1 多项式的乘积. 特别地, [tex=1.0x1.286]tfOKBWaLBHOxp4502/oePg==[/tex]上任一[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]次不可约首 1 多项式均是[tex=2.643x1.357]i+VxqnE17KYcKjLCA4F+Sg==[/tex]的次数最高的不可约因子.
- 列出多项式环[tex=2.214x1.357]Hx0uiLm5auamyXawloAtI5O4KH7jGkQYCcRXAaZqjI4=[/tex]中次数不超过[tex=0.5x1.0]2IRxdDa5OUp8cccgqlpdUA==[/tex]的所有不可约多项式。
- 令[tex=2.143x1.0]ZKy48ZoXMq79p+deYyxd3Q==[/tex]是仅含两个元素的域。 [tex=1.786x1.357]2pFrMmryE2cRTmNCb4YNBA==[/tex]是[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上一元多项式环。找出[tex=1.786x1.357]2pFrMmryE2cRTmNCb4YNBA==[/tex]中一切三次不可约多项式。
- 令[tex=2.143x1.0]ZKy48ZoXMq79p+deYyxd3Q==[/tex]是仅含两个元素的域。 [tex=1.786x1.357]2pFrMmryE2cRTmNCb4YNBA==[/tex]是[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上一元多项式环。证明,[tex=3.643x1.357]6yBAIp+rQ6nnop6LBJniXw==[/tex]是[tex=1.786x1.357]2pFrMmryE2cRTmNCb4YNBA==[/tex]中唯一的二次不可约多项式。