• 2022-05-27
    方阵[img=132x71]1802e4d89617f7d.png[/img]的特征值与特征向量为:
    A: 特征值(1, 1, 10),特征向量(-0.2981, -0.5963, -0.7454)^T, (0.8944, -0.4472, 0)^T, (0.3333, 0.6667, -0.6667)^T
    B: 特征值(-1, -1, 10),特征向量(-0.2981, -0.5963, -0.7454)^T, (0.8944, -0.4472, 0)^T, (0.3333, 0.6667, -0.6667)^T
    C: 特征值(1, 1, 10),特征向量(-0.2981, -0.5963, -0.7454)^T, (0.8944, 0.4472, 0)^T, (0.3333, 0.6667, -0.6667)^T
    D: 特征值(-1, -1, 10),特征向量(-0.2981, -0.5963, -0.7454)^T, (0.8944, 0.4472, 0)^T, (0.3333, 0.6667, -0.6667)^T
  • A

    内容

    • 0

      设3阶实对称矩阵A的特征值为λ1=1,λ2=2,λ3=3,属于特征值λ1和λ2的特征向量分别为α1=(-1,-1,1)^T,,α2=(1,-2,-1)^T求(1)A的属于特征值λ3的特征向量(2)求出A

    • 1

      设` A `为`n`阶实对称矩阵,` P `是` n `阶可逆阵,已知` n `维列向量` \alpha `是` A `的属于特征值` \lambda `的特征向量。则` (P^{-1}AP)^T `属于特征值` \lambda `的特征向量是( ) A: `P^{-1}\alpha`; B: `P^T\alpha`; C: `P\alpha`; D: `(P^{-1})^T\alpha`。

    • 2

      已知α=(1,-3,2)T,β=(0,1,-1)T,矩阵A=2βαT+7E,则矩阵A的最小特征值的特征向量是 A: .α. B: .β. C: α+β. D: α-β.

    • 3

      设有向量组(Ⅰ):α1=(1,0,2)T,α2=(1,1,3)T,α3=(1,-1,a+2)T和向量组(Ⅱ):β1=(1,2,a+3)T,β2=(2,1,a+6)T,β3=(2,1,a+4)T,试问:当a为何值时,向量组(Ⅰ)与向量组(Ⅱ)等价?当a为何值时,向量组(Ⅰ)与向量组(Ⅱ)不等价?

    • 4

      (1,1,-1)T是矩阵[imgsrc="http://p.ananas.cha...303.png"]的特征向量,则特征值为