设向量[1,a,−2]T与[0,1,3]T是对称矩阵A的属于不同特征值的特征向量,则参数a的值为().
举一反三
- 设3阶实对称矩阵A的特征值为λ1=1,λ2=2,λ3=3,属于特征值λ1和λ2的特征向量分别为α1=(-1,-1,1)^T,,α2=(1,-2,-1)^T求(1)A的属于特征值λ3的特征向量(2)求出A
- 已知3维列向量α,β满足αTβ=3,设3阶矩阵A=βαT,则()。 A: β是A的属于特征值0的特征向量 B: α是A的属于特征值0的特征向量 C: β是A的属于特征值3的特征向量 D: α是A的属于特征值3的特征向量
- 设A为3阶实对称矩阵,1,2为A的特征值, 向量 http:...为属于特征值2的特征向量是(
- 九、设(3)阶实对称矩阵(A)的特征值为(1,1,-1),有特征向量((1,1,1)^T,(2,2,1)^T),则(A=)____。
- 设` A `为`n`阶实对称矩阵,` P `是` n `阶可逆阵,已知` n `维列向量` \alpha `是` A `的属于特征值` \lambda `的特征向量。则` (P^{-1}AP)^T `属于特征值` \lambda `的特征向量是( ) A: `P^{-1}\alpha`; B: `P^T\alpha`; C: `P\alpha`; D: `(P^{-1})^T\alpha`。