证明拓扑空间[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]是紧致空间当且仅当它的加一点的紧致化[tex=1.357x1.071]dm2YcBYnrHkj1abXvcXX5Q==[/tex]中[tex=2.0x1.357]9EIvLGWT5gljrBnqKQwhIw==[/tex]是开集。
举一反三
- 拓扑空间[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]称为伪紧致的,如果对于任一连续映射[tex=6.571x1.357]QqFixYebT/bIENpOaCF+iOYIFpzQxTFHxwm4zQkZZEWoNPZ8j+8FX5pr7UM9yN0N[/tex]都是有界的。证明:度量空间[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]是紧致的当且仅当[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]是伪紧致的。
- 证明拓扑空间[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]为紧致空间( Lindelöf空间)当且仅当[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的每一开覆盖[tex=1.143x1.0]ct1heifmhlRlaKf9IxeRz7R6yuvApP6hxhsdYRIkYc4=[/tex]都有一个有限(可数)开覆盖[tex=1.214x1.286]sPM8RtXRTk7w+rKWJRetiEnagVT+Guy1ESzSxGoY8B4=[/tex]是[tex=1.143x1.0]ct1heifmhlRlaKf9IxeRz7R6yuvApP6hxhsdYRIkYc4=[/tex]的加细。
- 若仿紧空间[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的每一开子空间都是仿紧致的,证明[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的每一子空间都是仿紧致的。
- 设 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 是内积空间, [tex=1.357x1.071]dm2YcBYnrHkj1abXvcXX5Q==[/tex] 是它的共轭空间 [tex=0.857x1.214]ySq+LF3JxXjin1YiH7Ep/A==[/tex] 表示 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]上线性泛函 [tex=5.357x1.357]mifa97MVhoWHpOz4fUHvuwWItvuGB1Z7uuKqj45XOFk=[/tex] 若 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]到 [tex=1.357x1.071]dm2YcBYnrHkj1abXvcXX5Q==[/tex] 的映 射 [tex=3.214x1.214]hqXp3JSWKyHlc6Y2FW6IH+ze/Z8/DVQQgT7um70aWrs=[/tex] 是一一到上的映射,则 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 是[tex=3.286x1.214]S9kDCuSV263VAS7td8z0og==[/tex] 空间.
- 设[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]和[tex=0.786x1.0]9Zhj9WJRAwEw/9RNycpEcw==[/tex]都是可数紧致空间。证明:积空间[tex=2.857x1.143]OBJvJRkGmR50oaHqcerUhA==[/tex]也是一个可数紧致空间。