证明拓扑空间[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]为紧致空间( Lindelöf空间)当且仅当[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的每一开覆盖[tex=1.143x1.0]ct1heifmhlRlaKf9IxeRz7R6yuvApP6hxhsdYRIkYc4=[/tex]都有一个有限(可数)开覆盖[tex=1.214x1.286]sPM8RtXRTk7w+rKWJRetiEnagVT+Guy1ESzSxGoY8B4=[/tex]是[tex=1.143x1.0]ct1heifmhlRlaKf9IxeRz7R6yuvApP6hxhsdYRIkYc4=[/tex]的加细。
举一反三
- 拓扑空间[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]称为伪紧致的,如果对于任一连续映射[tex=6.571x1.357]QqFixYebT/bIENpOaCF+iOYIFpzQxTFHxwm4zQkZZEWoNPZ8j+8FX5pr7UM9yN0N[/tex]都是有界的。证明:度量空间[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]是紧致的当且仅当[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]是伪紧致的。
- 拓扑空间[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]称为完全正规空间,如果对于任意[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的隔离的子集[tex=2.0x1.214]vnzjVhyzo/NIhVUgFyjLlA==[/tex],分别有[tex=2.0x1.214]vnzjVhyzo/NIhVUgFyjLlA==[/tex]的开邻域[tex=1.929x1.214]DibqKwXF5FRI3Sjw7l8BFw==[/tex]使得[tex=4.0x1.143]+cKqsXrOL8EHzUiohf2HQIyNXEIXsCVQo1bhoeZ3QmE=[/tex]。证明:拓扑空间是完全正规空间当且仅当[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的每一子空间都是正规空间。
- 若仿紧空间[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的每一开子空间都是仿紧致的,证明[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的每一子空间都是仿紧致的。
- 证明拓扑空间[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]是紧致空间当且仅当它的加一点的紧致化[tex=1.357x1.071]dm2YcBYnrHkj1abXvcXX5Q==[/tex]中[tex=2.0x1.357]9EIvLGWT5gljrBnqKQwhIw==[/tex]是开集。
- 设 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 为可分 [tex=3.214x1.0]BJ0NiZYuvBIGjRY73gw/8w==[/tex] 空间, 证明 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 中任何规范正交系至多可数集.