若函数$f(x)$在点$a$处具有连续的二阶导函数,则$$\lim_{h\to 0}\frac{f(a+h)+f(a-h)-2f(a)}{h^2}=f''(a)$$
举一反三
- 10. 设函数$f(x)$在$x=a$的某邻域内有定义,则$f(x)$在$x=a$处可导的充分必要条件是()。 A: $\underset{h\to 0}{\mathop{\lim }}\,h(f(a+\frac{1}{h})-f(a))$存在 B: $\underset{h\to 0}{\mathop{\lim }}\,\frac{f(a+2h)-f(a+h)}{h}$存在 C: $\underset{h\to 0}{\mathop{\lim }}\,\frac{f(a)-f(a-h)}{h}$存在 D: $\underset{h\to 0}{\mathop{\lim }}\,\frac{f(a+h)-f(a-h)}{h}$存在
- 若函数f(x)在点a可导,则lim (f(a-f(a+2h)))/3h = ( )h→0 A: 2f'(a)/3 B: -3f'(a)/2 C: -2f'(a)/3 D: 3f'(a)/2
- 设函数$f(x)$在$x=0$处连续,且$\underset{h\to 0}{\mathop{\lim }}\,\frac{f({{h}^{2}})}{{{h}^{2}}}=1$,则()。 A: $f(0)=0$且${{{f}'}_{-}}(0)$存在 B: $f(0)=1$且${{{f}'}_{-}}(0)$存在 C: $f(0)=0$且${{{f}'}_{+}}(0)$存在 D: $f(0)=1$且${{{f}'}_{+}}(0)$存在
- 设f(x)在x = a的某个领域内有定义,则f(x)在x = a处可导的一个充分条件是( )。 A: $\lim \limits_{h \to + \infty } h[f(a + {1 \over h}) - f(a)]$存在 B: $\lim \limits_{h \to 0} {{f(a + 2h) - f(a + h)} \over h}$存在 C: $\lim \limits_{h \to 0} {{f(a + h) - f(a - h)} \over {2h}}$ D: $\lim \limits_{h \to 0} {{f(a) - f(a - h)} \over h}$
- 设函数f(x)在x=1处可导,且lim h→0 f(1)-f(1+2h)/h=-1/2,则f'(1)=() A: -1/2 B: 1/2 C: 1/4 D: -1/4