8.下列函数中为无界函数的是
A: $f(x)=\frac{{{x}^{2}}+\sqrt{1+{{x}^{2}}}}{2+{{x}^{2}}},\ \quad x\in (-\infty ,+\infty )$
B: $f(x)=({\rm{sgn}}x)\cdot \sin \frac{1}{x},\quad x\ne 0$,${\rm{sgn}} x$为符号函数
C: $f(x)=\frac{[x]}{x},\quad x>0$,$[x]$为取整函数
D: $f(x)=\frac{x}{\ln x},\quad x\in (0,+\infty )$
A: $f(x)=\frac{{{x}^{2}}+\sqrt{1+{{x}^{2}}}}{2+{{x}^{2}}},\ \quad x\in (-\infty ,+\infty )$
B: $f(x)=({\rm{sgn}}x)\cdot \sin \frac{1}{x},\quad x\ne 0$,${\rm{sgn}} x$为符号函数
C: $f(x)=\frac{[x]}{x},\quad x>0$,$[x]$为取整函数
D: $f(x)=\frac{x}{\ln x},\quad x\in (0,+\infty )$
举一反三
- 6.下列函数中$x=0$是其可去间断点的为()。 A: $f(x) = \left\{ {\begin{array}{*{20}{c}}<br/>{x + \frac{1}{x},\;\;x \ne 0,} \\<br/>{1,\;\;\;\;\;\;\;\,x = 0} \\<br/>\end{array}} \right.<br/>$ B: $f(x) = \left\{ {\begin{array}{*{20}{c}}<br/>{(1 + {x^2})\frac{1}{{{x^2}}},\;\;x \ne 0} \\<br/>{1,\;\;\;\;\;\;\;\;\;\quad \;\;x = 0} \\<br/>\end{array}} \right.<br/>$ C: $f(x) = [\cos x]<br/>$($[\cdot]$表示取整函数) D: $f(x) = {\mathop{\rm sgn}} (x)<br/>$(符号函数)
- 1.下列函数中,在定义域上无界的函数是 A: $f(x)=\frac{1}{x}\sin x$ B: $f(x)=x^2\sin \frac{1}{x}$ C: $f(x)=\frac{\ln x}{1+{{\ln }^{2}}x}$ D: $f(x)=\frac{1}{{{\text{e}}^{x}}+{{\text{e}}^{-x}}}$
- 下列函数中,在其定义域内处处连续的是( )。 A: \(f(x) = \left\{ {\matrix{ { { {1 - {x^2}} \over {1 + x}}\quad ,x \ne 1} \cr {0\quad \quad ,x = 1} \cr } } \right.\) B: \(f(x) = \left\{ {\matrix{ {\ln x\quad ,x > 0} \cr { { x^2}\quad ,x \le 0} \cr } } \right.\) C: \(f(x) = \left\{ {\matrix{ { { {\sqrt {x + 1} - 1} \over {\sqrt x }}\quad ,x > 0} \cr {1\quad ,x\le 0} \cr } } \right.\) D: \(f(x) = \left\{ {\matrix{ { { x^2} + 2x\quad ,x \le 0} \cr { { e^x}\quad ,x > 0} \cr } } \right.\)
- 6.下列函数中,在其定义域上有最大值的是()。 A: $f(x)=\frac{x}{{{\text{e}}^{x}}},\ \ \ x\in (0,+\infty )$ B: $f(x)=\frac{1}{{{\text{e}}^{x}}},\ \ \ x\in (0,+\infty )$ C: $f(x)=\frac{1}{{{\text{e}}^{x}}},\ \ \ x\in (0,1)$ D: $f(x)=\frac{1}{{{\text{e}}^{x}}},\ \ \ x\in (0,1]$
- 在其定义区间上连续的函数是( )。 A: \(f(x) = \left\{ {\matrix{ {x\quad ,{\rm{0}} \le x \le {\rm{1}}} \cr {1 - x\quad ,1 < x \le 2} \cr } } \right.\) B: \(f(x) = \left\{ {\matrix{ {x\quad ,0 < x \le 1 } \cr {2 - x\quad ,1 < x \le 2} \cr } } \right.\) C: \(f(x) = \left\{ {\matrix{ {x\;\quad ,0 \le x < 1} \cr {0\;\quad \quad ,x = 1} \cr {2 - x\quad ,1 < x \le 2} \cr } } \right.\) D: \(f(x) = \left\{ {\matrix{ { { 1 \over {x - 1}}\quad ,0 \le x \le 1} \cr {0\quad ,1 \le x \le 2} \cr } } \right.\)