举一反三
- 用导数定义求导数:[tex=4.5x2.643]nHHN4pLpj1G1uhQpyLUatowwPIwLnu3P84ibtuMgycE=[/tex],求[tex=2.214x1.429]U93ae75fuTDIyESpUsh0ZsDgKDbdXIcbBWW+plOs3hY=[/tex].
- 设分段函数[tex=9.286x3.357]w70lG1NUs5ZRhKHaXMaifahNYA2l55OVx/YI5vl5IU4Z64gRLKvhclOtJ9DnA6b4/YS4FyFCO3kr3jIMcLGPvSzXLe45CDGWyV6LoGPSy8NdJpbgM+MxElJ8lTaULxWl[/tex]求导数[tex=2.214x1.429]U93ae75fuTDIyESpUsh0ZsDgKDbdXIcbBWW+plOs3hY=[/tex].
- 设函数[tex=6.571x1.5]sE6Aas6x+mULF9vvpSmxZ+FhRWN40wttmb1RYCf053k=[/tex]。(1)求一阶导数[tex=2.214x1.429]iNxCerDUViDWTqUmlPeFSQ==[/tex];(2)证明[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=1.857x1.0]jl8uliKUg6qIeVpZvtGL9Q==[/tex]处不存在二阶导数。
- 利用求导法则求下列函数的导数.[tex=4.143x1.429]cEFDD/xbaqLWp+KOUfAvxQDFG2tl9yHNqmfKORRcrPM=[/tex]
- 求函数$y = {{1 + \root 3 \of {{x^2}} - \sqrt {2x} } \over {\sqrt x }}$的导数$y' = $( ) A: $ {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ B: $ - {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ C: ${1 \over 2}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$ D: ${1 \over 3}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$
内容
- 0
求函数[tex=3.286x1.429]kdT+eIE7CHPynuN6CaN40g==[/tex](抛物线)隐函数的导数[tex=1.071x1.429]BUw1BPFU3fsJlAl/vt9M9w==[/tex]当x=2与y=4及当x=2与y=0时,[tex=0.786x1.357]Hq6bf3CacUy07X+VImUMaA==[/tex]等于什么?
- 1
用导数定义求导数:[tex=3.571x1.0]jvDXr141ASoMfv4ROQ2oXQ==[/tex],求[tex=1.357x2.429]cWJSHEWUlBufMLmyWX04BHmYWTZFPPC9q3vmT7wjxc8=[/tex].
- 2
用导数定义求导数:[tex=3.643x1.5]8sCZNTLsdWVRiNtT0fYr3XT5a+EXohsaMOVW3nPyBlg=[/tex],求[tex=2.143x1.429]0mBW4j19SWcR4IFZyQje7Oh4pNXtNoYFRO+bL6e2Am4=[/tex].
- 3
若:(1)函数 f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数;(2)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]有导数;(3)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数及函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数,则函数[tex=5.643x1.357]GmtX7Vop79exGU/rpqXUYw==[/tex]在已知点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]的可微性怎样?
- 4
若:(1)函数 f(x)在点[tex=0.929x1.0]cjoIbYuE/p4IqfLA8eA4ZA==[/tex]有导数,而函数g(x)在此点没有导数;(2)函数f(x)和g(x)二者在点[tex=0.929x1.0]cjoIbYuE/p4IqfLA8eA4ZA==[/tex]都没有导数,可否断定它们的和[tex=7.214x1.357]oX568MWmpJJk2c1dN8FEzQ==[/tex]在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数?