设函数[tex=6.571x1.5]sE6Aas6x+mULF9vvpSmxZ+FhRWN40wttmb1RYCf053k=[/tex]。(1)求一阶导数[tex=2.214x1.429]iNxCerDUViDWTqUmlPeFSQ==[/tex];(2)证明[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=1.857x1.0]jl8uliKUg6qIeVpZvtGL9Q==[/tex]处不存在二阶导数。
举一反三
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 具有二阶连续导数,且 [tex=3.357x1.357]S8DKqLIO+otbp01PE+ZH8A==[/tex] [tex=11.286x4.5]PhL/cv4k8jAjyF+v4yjHJNpjGPiWgAcN2FFZnZdXw77NUjEjkjspv4YispdKli6Kt9wI/eexrx0vu1gUUw4V5f3nytu/yCjsvcX8QeA66xI8csLlfEZ5Mi8u81M9q8AdX/e18mAZC4LRSlkt9iQXaA==[/tex],(1) 求 [tex=2.143x1.429]DaxPfemWCiQgaNp8zD8Zfw==[/tex];(2) 证明 : [tex=1.857x1.357]4AsehPcyFJurfSXX5VJeww==[/tex] 的一阶导数在 [tex=1.929x0.786]qBxW1Wco1uHB6W+VkCK3Kw==[/tex] 处连续.
- 设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在点[tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex]处连续,且[tex=8.929x2.5]7NlgzqI15HNHcOejhBoNosOsW2KJ7Xmd/+All790z5k/JwfbsNukNIhD8f+G+hVp[/tex].证明: [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在[tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex]处可导,并求出导数 [tex=2.143x1.429]FvqGute248CTSaAIzNFe3g==[/tex] .
- 若:(1)函数 f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数;(2)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]有导数;(3)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数及函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数,则函数[tex=5.643x1.357]GmtX7Vop79exGU/rpqXUYw==[/tex]在已知点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]的可微性怎样?
- 证明:函数[tex=5.929x1.357]kubaPNy9ZqCyZoo2/Sm6f3B3WOcSZvhmOlecCu37HBw=[/tex]在[tex=1.857x1.0]3eSlq+W5GTl4xGu7dhqzgw==[/tex]处二阶导数不存在.
- 若:(1)函数 f(x)在点[tex=0.929x1.0]cjoIbYuE/p4IqfLA8eA4ZA==[/tex]有导数,而函数g(x)在此点没有导数;(2)函数f(x)和g(x)二者在点[tex=0.929x1.0]cjoIbYuE/p4IqfLA8eA4ZA==[/tex]都没有导数,可否断定它们的和[tex=7.214x1.357]oX568MWmpJJk2c1dN8FEzQ==[/tex]在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数?