举一反三
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶矩阵,[tex=2.786x1.286]N/eE1tAJJwPeRTpYlqOl2g==[/tex],证明:存在一个[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶非零矩阵[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex],使[tex=3.571x1.286]e+srJojTm8Kf62t4In3fUA==[/tex]的充分必要条件是[tex=3.071x1.286]rues2mK4IiepKYWuwXSq+Q==[/tex].
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为[tex=2.643x1.286]Pcp8G3f9iSqumpymQTeO6g==[/tex]实矩阵,且[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的秩[tex=3.857x1.286]Wa3gudbAEmsHT1iIhD91Ug==[/tex],证明[tex=2.071x1.286]t4LAURrctFIgPiUiJ+kFXA==[/tex]为正定矩阵.
- 证明:(1) 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex] 为矩阵,则[tex=4.286x1.286]oheUYwhZ0URiNEpsN7L7kA==[/tex]有意义的充分必要条件是[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex] 为同阶矩阵。(2) 对任意 [tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex] , 都有[tex=6.286x1.286]f9BmKY0KXh740nvID3nNj0fFKPsoX9X3zKZONqYCrR0=[/tex], 其中[tex=0.786x1.286]YggwMQ4w3PxfhkmL0NfgdQ==[/tex]为单位矩阵。
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]为[tex=2.643x1.286]Pcp8G3f9iSqumpymQTeO6g==[/tex]矩阵,证明:[tex=10.357x1.286]0/r0pDIsK4Iwlhjz7RpEUXSCNX4DRPbQI5NoRfzCFDQO30e+2J5I6u1+t0V+tM1S[/tex].
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是[tex=2.643x1.286]yu9Fqc429BTsCWKDfgGy8g==[/tex]矩阵,[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]是[tex=2.643x1.286]6/RzClznJ0ApNmeA+nDTlA==[/tex]矩阵,若[tex=2.786x1.286]zC7xJXoeB8a2/QoYj8ypvQ==[/tex],则必有[tex=3.857x1.286]zP6mipyuHv8M3CNhFf/2bw==[/tex]。
内容
- 0
设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为[tex=2.643x1.286]yu9Fqc429BTsCWKDfgGy8g==[/tex]矩阵,证明:存在[tex=2.286x1.286]w9nk1znIpMVff6nxiZc2Cw==[/tex]非零矩阵[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex],使[tex=3.357x1.286]HoxrNwgWc4OZ3Pm5ny2xpw==[/tex]的充分必要条件是[tex=4.857x1.071]79Wd/JsaQKi3RBB3vwr8352XiqRKKiTcEnzOMEhmkL0=[/tex]。
- 1
设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶矩阵,以下结论正确的是 未知类型:{'options': ['若[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]是对称矩阵,则[tex=1.571x1.286]aR1a8Eu3rZLX3flcxLOVFw==[/tex]也是对称矩阵。', '[tex=11.714x1.286]NJbZXpNrSzrAZ6Mf8tGLCupQ8DcVXXd7xcrIzZ9NK20=[/tex]。', '若[tex=3.571x1.286]e+srJojTm8Kf62t4In3fUA==[/tex],\xa0且[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]可逆\xa0,\xa0则[tex=2.857x1.286]aSKcbPomEkiO8fn5twsTPw==[/tex]。', '若[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]与[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]\xa0等价,则[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]与[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]\xa0相等。'], 'type': 102}
- 2
设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]和[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]均为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶非零矩阵,且 [tex=3.571x1.286]e+srJojTm8Kf62t4In3fUA==[/tex], 则[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex] 和[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]的秩 A: 必有一个等于零 B: 一个等于 n, 一个小于 n C: 都等于 n D: 都小于 n
- 3
设事件[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]和[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex],以及[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]和[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]独立.证明:若[tex=3.571x1.286]sm+ubH8D05A2CZ7dGt1f//mPnTBBOrHzlWsagGHJR2U=[/tex],则[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]与[tex=2.786x1.286]Kp1ichsk62aQfsLW5xkZZg==[/tex]独立.
- 4
设 3 阶矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值互不相同,若行列式[tex=3.071x1.286]FYCnFYQQa8C3I+O2sfSSGA==[/tex], 则[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的秩为 A: 0 B: 1 C: 2 D: 3