• 2022-07-27
    设[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]是域[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上的线性空间,[tex=0.714x1.286]yQZEV57S9rHjYvgfJydTyg==[/tex]是[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]的任一子集。[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]中包含[tex=0.714x1.286]yQZEV57S9rHjYvgfJydTyg==[/tex]的所有子空间的交称为由[tex=0.714x1.286]yQZEV57S9rHjYvgfJydTyg==[/tex]生成的子空间,记作[tex=1.357x1.286]FP0/Kp7AEY7Jbzr8yeovuxGYZvgPzg2vzFQmD9y3FIA=[/tex],即[tex=4.429x1.286]k0NPyIz9PsRYJ2KJDl5JHp2uYIPrA48oe7uK+f1PuLg=[/tex],其中[tex=1.071x1.286]U4awQ74hGmTHJgQmKU0Jmg==[/tex]取遍[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]中包含[tex=0.714x1.286]yQZEV57S9rHjYvgfJydTyg==[/tex]的所有子空间,用[tex=0.714x1.286]atrPPistVyxj7cY8rjePCQ==[/tex]表示由[tex=0.714x1.286]yQZEV57S9rHjYvgfJydTyg==[/tex]里的任意有限多个向量的所有线性组合组成的集合,证明:[tex=3.429x1.286]k0NPyIz9PsRYJ2KJDl5JHnNogqZhapq2DZXQvv1sCdI=[/tex]。
  • 举一反三