举一反三
- 设[tex=0.714x1.0]UsTt0JMISB2vmq9eVGUHdA==[/tex],[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]和[tex=1.071x1.286]U4awQ74hGmTHJgQmKU0Jmg==[/tex]是线性空间[tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex]的子空间,证明:[tex=14.286x1.357]P0nwR6jR4Kz0NYaILIZksRa3KUpQ18i8T9ZM7e2wALg7rYREaXq6YtDH5oERgVCx[/tex]。
- 设[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]是域[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上的线性空间,[tex=0.714x1.286]yQZEV57S9rHjYvgfJydTyg==[/tex]是[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]的任一子集。[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]中包含[tex=0.714x1.286]yQZEV57S9rHjYvgfJydTyg==[/tex]的所有子空间的交称为由[tex=0.714x1.286]yQZEV57S9rHjYvgfJydTyg==[/tex]生成的子空间,记作[tex=1.357x1.286]FP0/Kp7AEY7Jbzr8yeovuxGYZvgPzg2vzFQmD9y3FIA=[/tex],即[tex=4.429x1.286]k0NPyIz9PsRYJ2KJDl5JHp2uYIPrA48oe7uK+f1PuLg=[/tex],其中[tex=1.071x1.286]U4awQ74hGmTHJgQmKU0Jmg==[/tex]取遍[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]中包含[tex=0.714x1.286]yQZEV57S9rHjYvgfJydTyg==[/tex]的所有子空间,证明:[tex=3.357x1.357]hlzyIv+AZbG9YXlFnOROTobPfwqjCcU2K3kUTR5lVM0=[/tex]。
- 设[tex=3.143x1.286]W9AF7fR1WqhMGTtsETMyY3weIJPad4SLTOq9KrvSIVc=[/tex]是向量空间[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]的子空间,证明[tex=3.786x1.286]CodcfJC5l11u2QacfGTUTvhCqQJBmY2d8mdiZi97mAE=[/tex]也是[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]的子空间 .
- 设[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]是域[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上的线性空间,[tex=0.714x1.286]yQZEV57S9rHjYvgfJydTyg==[/tex]是[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]的任一子集。[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]中包含[tex=0.714x1.286]yQZEV57S9rHjYvgfJydTyg==[/tex]的所有子空间的交称为由[tex=0.714x1.286]yQZEV57S9rHjYvgfJydTyg==[/tex]生成的子空间,记作[tex=1.357x1.286]FP0/Kp7AEY7Jbzr8yeovuxGYZvgPzg2vzFQmD9y3FIA=[/tex],即[tex=4.429x1.286]k0NPyIz9PsRYJ2KJDl5JHp2uYIPrA48oe7uK+f1PuLg=[/tex],其中[tex=1.071x1.286]U4awQ74hGmTHJgQmKU0Jmg==[/tex]取遍[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]中包含[tex=0.714x1.286]yQZEV57S9rHjYvgfJydTyg==[/tex]的所有子空间,用[tex=0.714x1.286]atrPPistVyxj7cY8rjePCQ==[/tex]表示由[tex=0.714x1.286]yQZEV57S9rHjYvgfJydTyg==[/tex]里的任意有限多个向量的所有线性组合组成的集合,证明:[tex=3.429x1.286]k0NPyIz9PsRYJ2KJDl5JHnNogqZhapq2DZXQvv1sCdI=[/tex]。
- 设Y为拓扑空间X的子空间,[tex=2.857x1.143]NVnyOfFr6g+52w3PWMWtUw==[/tex]。证明:如果A是X的开集,则[tex=3.214x1.357]A5fpx1grvjGXknKAptjZSQj/Uched02zngkQag+eknY=[/tex]
内容
- 0
设[tex=0.786x1.286]sgM90Q/VISKeSqiI8AMXRw==[/tex] 是线性空间[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex] 的一个子空间, 试证: 若 [tex=0.786x1.286]sgM90Q/VISKeSqiI8AMXRw==[/tex] 与[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex] 的维数相等, 则[tex=2.857x1.286]n/7xK9Ka3HB+xDHBJPQ3pw==[/tex].
- 1
设[tex=5.714x1.214]lZfcRDOHT43TyAqQoLZlW4Lv5aXy2IYDr1d8cyMxju8=[/tex]都是域[tex=0.643x1.0]J+LW/0i6Fe+lWEmBUgT8zg==[/tex]上[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]维线性空间[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]的真子空间,证明:如果域[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]的特征为0,那么可以找到[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]的一个基,使得其中每个向量都不在[tex=5.714x1.214]lZfcRDOHT43TyAqQoLZlW4Lv5aXy2IYDr1d8cyMxju8=[/tex]中。
- 2
在数域[tex=0.643x1.0]SrAoc7XdpRH4/IzfgfsX9A==[/tex]上的所有关于[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]的多项式构成的线性空间[tex=1.786x1.357]OsT+2WwLJzEQyHN3KIjpRw==[/tex]中, 所有满足[tex=5.286x1.357]IpEo4at8FvHN6+GTgeEKZA==[/tex]的多项式[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的集合记为[tex=1.071x1.286]U4awQ74hGmTHJgQmKU0Jmg==[/tex]。所有满足[tex=6.071x1.357]QAKd6JuXD3qmM5BgGo/OSQ==[/tex]的多项式[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的集合记为[tex=0.786x1.286]sgM90Q/VISKeSqiI8AMXRw==[/tex]。证明:[tex=1.071x1.286]U4awQ74hGmTHJgQmKU0Jmg==[/tex]与[tex=0.786x1.286]sgM90Q/VISKeSqiI8AMXRw==[/tex]都是[tex=1.786x1.357]OsT+2WwLJzEQyHN3KIjpRw==[/tex]的子空间,并且[tex=5.071x1.357]tlamONh114ERdbgLHF/usA==[/tex],[tex=4.929x1.357]5nxtcT518/WIpHqVQ/9pKou/ORliLqwlFRp+bnRXU8A=[/tex]。
- 3
设[tex=1.0x1.286]v7Qd/mZc6lgtivR18cySVw==[/tex],[tex=1.0x1.286]iuU7wrETqDhgQ9FnxU+qVg==[/tex]为向量空间[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]的两个线性流形,下列集合是否构成[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]的线性流形?(1)[tex=3.071x1.286]RBsT7ls142drw6n7GT5VYUk4909y96HQ7mbYlNLG8EI=[/tex];(2)[tex=3.071x1.286]MSYoc/r3ykgxXO/vP3oG8LJTaIaeusSGZcrC/a+Dt/0=[/tex];(3)[tex=16.429x1.286]E1B3wvDNurwzYU95C89NzfTRP44LQNOcYFoxXHeBPRB0MEoGj4bK0q4VZlIRQFcO2K4n+Fy/rHYRrE42TVsRFqJt+6hBiBLPcDfQh6CUY48dEa3mgyb/RLV6g5auTe2t8MG+hSGjfDQz5qDfB5xQaQ==[/tex]。
- 4
取集合[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]为实数域[tex=0.786x1.0]czmpOvTmaMgRl7StPBE3ig==[/tex],数域为有理数域[tex=0.857x1.214]ChdusW5rAupjge6v/DGHRA==[/tex]。集合[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]的向量加法规定为实数的加法,纯量与向量的乘法规定为有理数与实数的乘法,则[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]成为有理数域[tex=0.857x1.214]ChdusW5rAupjge6v/DGHRA==[/tex]上的线性空间。证明:在线性空间[tex=0.857x1.286]ZpwhzmyivskaH5M1X7ozaQ==[/tex]中,实数1与[tex=0.643x0.786]hlJJ6/DUY+n2/FE6M2JdRA==[/tex]线性无关的充分必要条件是,[tex=0.643x0.786]hlJJ6/DUY+n2/FE6M2JdRA==[/tex]为无理数。