设G是连通平面图G的对偶图, [tex=4.071x1.286]NQ7Vi8rxJp+kuC2dOvMaTz9K66+N/5G+D1eG0ZOGzEw=[/tex]和[tex=2.5x1.0]L+FNGvQ/rlNVudCKkInplQ==[/tex]分别为[tex=1.214x1.071]xlen8b8M7C/5kq7unHQzjQ==[/tex]和[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的结点数、边数和面数,则[tex=4.5x4.214]HK+IXULoMB5GHWcBfZJ0KNfDSQRlEUCQLUqKdl0Hk/21RcSg00WzV8Fzus/Qu1CH[/tex]
举一反三
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- 求 8 阶自对偶图 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的边数 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 和面数 [tex=0.5x0.786]U5O66aolbR1y5vuKrQbXNA==[/tex].
- 若简单平面图[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的节点数[tex=2.5x1.0]ua15E5p+9xsjNZsLZigWeg==[/tex]且边数[tex=2.714x1.0]dklUqe7psTC0B/Vrstgg5Q==[/tex],则[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是连通图,试证明之。
- (1) 设[tex=1.143x1.214]dR9jxhXF4eOBq39r4zKh9g==[/tex]与[tex=1.143x1.214]1b46y//cjGpQ43dW216vJA==[/tex]是两个平面图,若[tex=3.643x1.571]qTl+oasCr3T9IVJ+KgQZSZEdxxhD9K1gmiQ9VkVcO1E=[/tex],它们的对偶图[tex=3.714x1.571]hTXLrYla6i91O01NvB1/8D7Gxn/bkWEHgwnrfnghRks=[/tex]。这个命题为[tex=2.143x2.429]rVbjoKgaBYChmT2nPEBA4Q==[/tex]。(2) 任何平面图[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的对偶图[tex=1.214x1.071]7DwFMljnmNxjtKf8fSxG1A==[/tex]的对偶图[tex=1.571x1.071]gEKcCVI33pHSbZsmJNvZAQ==[/tex]与[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]同构。这个命题为[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]。(3) 任何平面图[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的对偶图[tex=1.214x1.071]7DwFMljnmNxjtKf8fSxG1A==[/tex]的面数[tex=0.929x1.071]IBNH4jjhZIn6t7n7W9WcfQ==[/tex]都等于[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的顶点数[tex=0.643x0.786]h6IfGOxBlahC8le5jX4WiA==[/tex]。 这个命题为[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]。供选择的答案[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]、[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]、[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]:(1) 真;(2) 假。
- 证明若[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是每个区域至少由[tex=3.714x1.357]t4m09K08tJGB1uusdhNvVuc5URErc/eaaGjLa86CMP4=[/tex]条边围成的连通平面图,则[tex=7.143x1.357]LLrBhqlfzFUTMWOZW2F2hBiVCl9ndgMIOcEv+gIW3cs=[/tex]。这里[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]、[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex]分别是图[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的顶点数和边数。