设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是群,[tex=9.929x1.214]JM4tQjl6a9NNwyjZcWT+ap1v58B76RSraa9djOWCTd1TRQVSGB7oQN0u6i4Y7OuM[/tex],其中[tex=1.929x1.0]+MkgvJhrh9DSU9I+bn6v4w==[/tex]是两个整数. 证明:若[tex=3.857x1.357]F4tV21foNbM77cxYm4XUQQ==[/tex],则[tex=2.357x1.071]RK4liA3wYJzqoPBL4yUt5Q==[/tex]
举一反三
- 设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是群,[tex=2.786x1.214]jKZpJsLsrY0OUYjZnnjH6g==[/tex] 是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的有限子群, 假设[tex=6.786x1.357]D4gw5s8KAcbDDrJsBXNrYA2hZdjmfrJUvOTfe4nOOFsIxysd+i9XkGexdPrfQxlmXpvH+iP19GloyTwhdIPkRnvvXiiAeJl6v7f9cTjWMbQ=[/tex], 证明:[tex=7.5x1.357]Gma+AqI6Zd3NCkICIkEo4VZ5BpbTXGqN6LOiiVd8Ej+g8ccDH3LQ3xKl2IKREw6grfW0+8aYsmpRDPYY/s39PvFjLQ9QMdPyFCjBwq5dr/4=[/tex]
- 下列代数系统[tex=2.643x1.357]ceH+eYnXqUT340bMKzk9Jw==[/tex]中,其中[tex=0.786x1.071]sISe4zlsm5XRzMPtQa+aFQ==[/tex]是普通加法运算,试说明哪几个不是群.(1)[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]为整数集合; (2)[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]为偶数集合;(3)[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]为有理数集合; (4)[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]为自然数集合.
- 证明:前[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个自然数之和的个位数码不能是 2、4、7、9
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- 设 9 阶无向图 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 中,每个顶点的度数不是 5 就是 6, 证明 : [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 中至少有 5 个 6 度顶点或至 少有 6 个5 度顶点.