图 [tex=1.357x1.357]Lt8Ly9IQTOKvEnwKD/KDLg==[/tex] 所示单元体,已知右侧面上有与 [tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex] 方向成 [tex=0.5x1.0]qm+hGi0qngLh1B7HsENMPg==[/tex] 角的切应力 [tex=0.5x0.786]xdTs2QHMXTpKzI7ZnwCRMQ==[/tex],试根据切应力互等定理,画出其他面上的切应力。[img=498x172]1795be00318110b.png[/img]
举一反三
- 思考题 图 (a) 所示单元体, 已知右侧面上有与 y 方向成 [tex=0.5x1.0]qm+hGi0qngLh1B7HsENMPg==[/tex] 角的切应力 [tex=0.5x0.786]xdTs2QHMXTpKzI7ZnwCRMQ==[/tex], 试根据切 应力互等定理, 画出其他面上的切应力。[img=257x237]17e0920139d9e86.png[/img]
- 图 [tex=1.357x1.357]Lt8Ly9IQTOKvEnwKD/KDLg==[/tex] 所示为处于平面应力状态下的单元体,若已知 [tex=2.857x1.071]z7opkeLRldjTaMX1PsKn0NKYP4nY39x0UQ624967pgs=[/tex] 的斜截面上应力 [tex=5.429x1.214]k/uwpAxvECQAnFXZPnEQ1Mmxl4V8XSXYJvHChqLwQrY59Q+ukGvDMN4nXlfXT4aN[/tex], [tex=6.071x1.214]fFXRmtM2MqhYFWxXKkGCgeXK+OAbsGqHLFuob9SSEOk6aahR/K7Fc+z4Pxgj+0MY[/tex], 试用应力圆求该单元体的主应力和最大切应力值。[img=284x327]17a75dd2c91a646.png[/img]
- 图 [tex=1.357x1.357]Lt8Ly9IQTOKvEnwKD/KDLg==[/tex] 所示受扭圆杆, 由两个横截面 [tex=4.714x1.214]CXTyaNAPG1ArjfQ9NLbmng==[/tex] 和一个通过轴的纵截面 [tex=3.857x1.143]U8MfXS09Agam6ZF515CiIA==[/tex] 截取的一隔离体,由横截面上的切应力分布规律和切应力互等定理,可得隔离体各截面上的切应力分布如图 [tex=1.214x1.357]vzdGmXlbw83hTiK2SebvEA==[/tex] 所示,试问:(1)纵截面 [tex=3.071x1.0]e5EIPYnepEEuR7xsfwlQ6w==[/tex] 上切应力所构成的合力偶矩为多大?(2) 该合力偶矩是如何去平衡的?[img=651x169]1795bcb469932fd.png[/img]
- 图示单元体,设 [tex=4.357x1.357]RN65B74R79/nR4Lpmaagac63ben7e2Wb+53nRXx0bLFlPDE/e66my/f+rFpqRFZ6npIu/ceTsMQZ6lbKPSsE8g==[/tex] 。 试根据应力圆的几何关系,写出图 [tex=1.357x1.357]9AF2UeeHBFR9WhJN3K2/3w==[/tex] 所示单元 体任一斜截面 [tex=2.286x1.071]RAhTJ6qPVJlhpMgdZQTC2w==[/tex] 上正应力及切应力的计算公式。[img=279x283]17a760f7d1dfd8a.png[/img]
- 试求图 [tex=1.357x1.357]Lt8Ly9IQTOKvEnwKD/KDLg==[/tex] 所示四分之一圆形截面对于 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴和 [tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex] 轴的惯性矩 [tex=1.929x1.286]4NWfVlvEGInaw8wvmqHLmQ==[/tex] 和惯性积 [tex=1.214x1.286]XnIhJGSFoJz12SXYPUzayA==[/tex] 。[img=250x220]17a7b9b4e43a0f5.png[/img]