图 [tex=1.357x1.357]Lt8Ly9IQTOKvEnwKD/KDLg==[/tex] 所示为处于平面应力状态下的单元体,若已知 [tex=2.857x1.071]z7opkeLRldjTaMX1PsKn0NKYP4nY39x0UQ624967pgs=[/tex] 的斜截面上应力 [tex=5.429x1.214]k/uwpAxvECQAnFXZPnEQ1Mmxl4V8XSXYJvHChqLwQrY59Q+ukGvDMN4nXlfXT4aN[/tex], [tex=6.071x1.214]fFXRmtM2MqhYFWxXKkGCgeXK+OAbsGqHLFuob9SSEOk6aahR/K7Fc+z4Pxgj+0MY[/tex], 试用应力圆求该单元体的主应力和最大切应力值。[img=284x327]17a75dd2c91a646.png[/img]
举一反三
- 已知应力状态如图所示(单位:[tex=2.143x1.0]fDgFk5gk85sdLbqy9gdViA==[/tex] ),试求:[img=294x249]17a69f5fa03c8ca.png[/img](1)指定斜截面上的应力;(2)主应力;(3)在单元体上绘出主平面位置及主应力方向;(4)最大切应力。
- 图 [tex=1.357x1.357]Lt8Ly9IQTOKvEnwKD/KDLg==[/tex] 所示单元体,已知右侧面上有与 [tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex] 方向成 [tex=0.5x1.0]qm+hGi0qngLh1B7HsENMPg==[/tex] 角的切应力 [tex=0.5x0.786]xdTs2QHMXTpKzI7ZnwCRMQ==[/tex],试根据切应力互等定理,画出其他面上的切应力。[img=498x172]1795be00318110b.png[/img]
- 图示单元体,设 [tex=4.357x1.357]RN65B74R79/nR4Lpmaagac63ben7e2Wb+53nRXx0bLFlPDE/e66my/f+rFpqRFZ6npIu/ceTsMQZ6lbKPSsE8g==[/tex] 。 试根据应力圆的几何关系,写出图 [tex=1.357x1.357]9AF2UeeHBFR9WhJN3K2/3w==[/tex] 所示单元 体任一斜截面 [tex=2.286x1.071]RAhTJ6qPVJlhpMgdZQTC2w==[/tex] 上正应力及切应力的计算公式。[img=279x283]17a760f7d1dfd8a.png[/img]
- 已知应力状态如图[tex=1.357x1.357]9AF2UeeHBFR9WhJN3K2/3w==[/tex]、[tex=1.214x1.357]1UXtoYxygKGhdbzkW8pekQ==[/tex]、[tex=1.214x1.357]0lZ98ZFNztZzjzmrnYG3Pg==[/tex]所示,试据应力圆的几何关系求指定斜截面[tex=1.0x1.0]gYJhypvKme6HbnVYnWCsSw==[/tex]上的应力,并画在单元体上。[img=326x306]179ec39e2b4993c.png[/img]
- 已知应力状态如图[tex=1.357x1.357]9AF2UeeHBFR9WhJN3K2/3w==[/tex]、[tex=1.214x1.357]1UXtoYxygKGhdbzkW8pekQ==[/tex]、[tex=1.214x1.357]0lZ98ZFNztZzjzmrnYG3Pg==[/tex]所示,试据应力圆的几何关系求指定斜截面[tex=1.0x1.0]gYJhypvKme6HbnVYnWCsSw==[/tex]上的应力,并画在单元体上。[img=273x288]179ec32f8b846a1.png[/img]