顺序Gauss消去法能进行到底的充要条件是( )。
A: 系数矩阵可逆
B: 系数矩阵的前n-1阶顺序主子式非零
C: 系数矩阵的各阶顺序主子式非零
D: 系数矩阵的前n-1阶主子式非零
A: 系数矩阵可逆
B: 系数矩阵的前n-1阶顺序主子式非零
C: 系数矩阵的各阶顺序主子式非零
D: 系数矩阵的前n-1阶主子式非零
B
举一反三
- 列主元高斯消去法能进行到底的充要条件为 A: 系数矩阵的各阶顺序主子式不为零 B: 系数矩阵可逆 C: 系数矩阵的前n-1阶顺序主子式不为零
- 用高斯顺序消去法解线性方程组时,消元能进行到底的充分必要条件是( ). A: 系数矩阵A的前n-1阶顺序主子式非零 B: 系数矩阵A的前n-1阶顺序主子式为零 C: 系数矩阵A不可逆 D: 系数矩阵A可逆
- 矩阵A能唯一Dollite分解的充要条件 A: 矩阵A可逆 B: 矩阵A奇异 C: 以矩阵A为系数矩阵的线性方程组能用顺序高斯消去法求解 D: 矩阵A的前n-2阶顺序主子式非零
- 在用直接法求解线性方程组时,可以用顺序Gauss消去法的必要条件是( )。 A: 系数矩阵可逆 B: 系数矩阵行列式为零 C: 右端项不为零 D: 系数矩阵各阶顺序主子式不为零
- 下列叙述正确的有( ) 未知类型:{'options': ['只要系数矩阵A非奇异,Gauss顺序消去法就一定能进行下去', '只要系数矩阵A的对角线元素[img=174x23]17de88c2909682d.png[/img],Gauss顺序消去法就一定能进行下去。', '如果系数矩阵A对称正定,则Gauss顺序消去法一定能进行下去', '如果系数矩阵A的各阶顺序主子式均大于零,则Gauss顺序消去法一定能进行下去'], 'type': 102}
内容
- 0
关于列主元Gauss消去法能够顺利进行的条件,下列说法正确的是( ) A: 只要系数矩阵的行列式不等于零,列主元Gauss消去法就能够顺利进行. B: 只有系数矩阵的各阶顺序主子式大于零时,列主元Gauss消去法才能够顺利进行. C: 只有系数矩阵的各阶顺序主子式小于零时,列主元Gauss消去法才能够顺利进行. D: 只有系数矩阵对称正定时,列主元Gauss消去法才能够顺利进行.
- 1
矩阵A为Hermite正定矩阵的充要条件是什么?( ) A: 矩阵A的行列式不为零 B: 矩阵A的行列式大于零 C: 矩阵A的n个顺序主子式全部大于零 D: 矩阵A的n个顺序主子式全部不为零
- 2
若满足条件( ),则求解线性方程组Ax=b的Gauss 解法可以实现。 A: 矩阵A 非奇异 B: A 为对称矩阵 C: A为对称正定矩阵 D: A 矩阵A 各阶顺序主子式非零
- 3
若n阶非奇异矩阵A的前n-1阶顺序主子式有的为0,则可以在A的左边或右边乘以初等矩阵,就将A的行或列的次序重新排列,使A的前n-1阶顺序主子式非0,从而可以进行三角分解?
- 4
顺序高斯消去法可行的充分必要条件是系数矩阵A 的所有顺序主子式Dk≠0,k=1,2,... ,n