• 2022-07-27
    在半径为 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 的半球内,内接一长方体,问各边长多少时,其体积为最大?
  • 解:设内接长方体的长、宽、高分别为 [tex=2.143x1.0]4UtdoATYkKYd/cmJ5vuznw==[/tex]则 [tex=10.0x2.786]pjYF+p/nKtOmu5zjO7/2vWfFu/vyWs4AYSssCSxoYLMdeifcKdw0ciiLRNxizUvWZVb202e+KnKKzyvZwQju4vKAFK2ZFAaIO1KVfpHtov8=[/tex][tex=11.786x2.786]kgAPKGc9+2zkfoNXRCiur4Gb0nTRUy93qMslLRoZziGLfldJREW4FdPdkWAY3Qrp+qC2lkHfbLovy9S9eCj2TFX7d7FfX/ZVDjV9V6hE+5tQwNQI4pWEtdoRpIkvtY0z[/tex]由 [tex=20.786x3.786]aoAtmkWSHYklGULM9bBrEoOYUHwctHS9ULViNowL7YBbImQeTTw8At/fQGVkMBWq4WILsiJr4j9eOdfdGWHiG13s8QHWskwgdv0Y6zHw1un9Nv96FMaEG9jaaRSMD6ezrpUpYdw9axotAEsTrGdy1gn7LitUUdf5lWFi2EyYdHtdYME1/DGNcauSd62MZVS/8dO5P3fnJJFOdGQzh9SNdx1Ens+/9v0n/LuU+STnlMRlWZsJIebzOMEOlu2WVbYF1sC5Ir2NAtbnrT2mh4IXcg==[/tex][tex=22.286x3.786]aoAtmkWSHYklGULM9bBrEkojSf4pJzG10NGiinvRgQqVx4AChu+i+tD/wuYjOnzY5PbFpU134PIfH3+akYcgEBUUtPAy6TOweb2a7SxjhWdr1DvYDNxrQ8WsfPOPE+DT3XvaEafluppxmHSekw2lWpmis7j+wZWDzko6J0ybsD8qqE67Zul6M1T7UPyAs1cbtz+YEeQsd4yTEcNTFiABlb12UWw7NxrWI8G1xcDqbt+DxWC7ToBlcure10hrcDwZYXpmOkI42vP5cJ00OldjQCiv0t8i0nDQO4er9X6WTgU=[/tex]解得 [tex=9.643x2.643]8UzDuKKRzWghC6rCR4FMbIxREpgyBO1SgLpzHzkbO8zW2F7lc7XrOZbt+mnK2Zl1WL4JaBI+i0FrXz1qUmjGmA==[/tex]由驻点的唯一性知, 当长、宽、高分别为 [tex=8.929x2.643]ki1mKtey7YE4u/Xe+wyJvBZDbnhYerA/BmHna7TOvVSwkwShz3ZpxJgqytp/uByBpJ6aQmGW3kZZAXsq0xuQK82oiaBYcWshy1EeMVOi9rM=[/tex]时, 内接长方体体积 最大.

    内容

    • 0

      设长方体三个面在坐标面上,其中一个顶点在平面[tex=6.429x1.786]TBds0hNzYSfS+OjgbQlOLoAFKMPvleqkFaZWJ7QtT+0K76WtdGSEEMDFGmSERlTS[/tex][tex=12.571x1.286]ER2IkVydPIe+HWo6IJvYGBdrMoRBIUEIuQsNuT6eSG4=[/tex]上。问:长方体的边长为多少时,其体积最大?

    • 1

      求内接于半径为[tex=0.786x1.286]yokTf2U2Z7kNGUXMm22GjQ==[/tex]的球有最大体积的长方体。

    • 2

      在半径为[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]的半球外作一外切圆锥体,问其高及底半径取多少才能使圆锥体体积最小?

    • 3

      在半径为 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 的半球外作大外切圆锥体,要使圆锥体体积最小,圆锥的高度及底半径应是多少?

    • 4

      在半径为的球内接一长方体,当长、宽、高为时,其体积最大。