举一反三
- 设 3 阶矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值互不相同,若行列式[tex=3.071x1.286]FYCnFYQQa8C3I+O2sfSSGA==[/tex], 则[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的秩为 A: 0 B: 1 C: 2 D: 3
- 从 52 张扑克牌中任取 4 张,试计算:① 4 张中有 1 张 [tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex] 的概率;② 4 张中有 2 张 [tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex] 的概率;③ 4 张中有 3 张 [tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex] 的概率;④ 4 张中有 4 张 [tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex] 的概率。
- set1 = {x for x in range(10)} print(set1) 以上代码的运行结果为? A: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} B: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10} C: {1, 2, 3, 4, 5, 6, 7, 8, 9} D: {1, 2, 3, 4, 5, 6, 7, 8, 9,10}
- 若可逆矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]作下列变化,则[tex=1.714x1.286]TO1yVSeu6VTkH5eqe0g3AQ==[/tex]相应地有怎样的变化?(1)[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]中[tex=0.357x1.286]IAXU2Bqg62H881xvV8eoHw==[/tex]行与[tex=0.5x1.286]vaguiW6u3ltwNwgVxp69rQ==[/tex]行互换;(2)[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]中[tex=0.357x1.286]IAXU2Bqg62H881xvV8eoHw==[/tex]行乘上非零数[tex=0.571x1.286]pc/qlnA3cxu8Ag9jp3tYHQ==[/tex];(3)[tex=2.071x1.286]6gewx0PIikJyvSQvJcOOfw==[/tex]时,[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]中第[tex=0.5x1.286]vaguiW6u3ltwNwgVxp69rQ==[/tex]行乘上数[tex=0.571x1.286]pc/qlnA3cxu8Ag9jp3tYHQ==[/tex]加到第[tex=0.357x1.286]IAXU2Bqg62H881xvV8eoHw==[/tex]行。
- 试证:[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶方阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]若满足下列三个条件中的两个,则满足第三个.(1)[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]对合(即[tex=3.286x1.286]UYeZQ7ctQhujC8g1CvD2aw==[/tex]);(2)[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]正交(即[tex=4.143x1.286]ipHnU2E6ffERGyrFE1fc9kE2N9mFcWmeGSLHv9NAmP8=[/tex]);(3)[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]对称(即[tex=3.429x1.286]qB0DVTOnJKxkmsLEs1Xg1Q==[/tex]).
内容
- 0
设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为 3 阶矩阵,[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值为 0,1,2, 那么齐次线性方程组[tex=3.429x1.286]FF5bUci0HbqKyNGyHKVoog==[/tex]的基础解系所含解向量的个数为 A: 0 B: 1 C: 2 D: 3
- 1
已知 3 阶矩阵 [tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex] 的特征值为 1,2,-3, 求 [tex=6.5x1.286]s2V6Qaqp+bpcXLertnl3P3mVLO+x0D+2LbCkAvqppHs=[/tex].
- 2
圆上有四点[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]、[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]、[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]、[tex=0.857x1.286]s+r8LBAs3scxfl88DGExcg==[/tex],其中[tex=1.571x1.286]e/M+7IW9tlhsCB6JYdr25Q==[/tex]与[tex=1.643x1.286]xGRLrED4Yu/Z7B5F7BY9Bg==[/tex]相交于点[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex],其中[tex=3.357x1.286]nfuDxCPBvPOGuPBRhZHhCg==[/tex],[tex=3.357x1.286]fKnNBSk4H5tnDBRiow4y5Q==[/tex],[tex=3.286x1.286]vDyWFwfl554FvTdgbOI1Qg==[/tex],则[tex=2.643x1.286]cJGxmmS4iAvxiwJoj5VhgA==[/tex] A: 6 B: 4 C: 3 D: 2 E: 1
- 3
>>>x= [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9]>>>print(x.sort()) 语句运行结果正确的是( )。 A: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] B: [10, 6, 0, 1, 7, 4, 3, 2, 8, 5, 9] C: [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0] D: ['2', '4', '0', '6', '10', '7', '8', '3', '9', '1', '5']
- 4
已知[tex=6.071x1.286]GZbiT2P8T8KVyVUEWQpYyjIiVTkGekbnZrmhPI/Gp54=[/tex]有下列关系;(1)如果[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]不真包含于[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex],那么[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]与[tex=0.857x1.286]s+r8LBAs3scxfl88DGExcg==[/tex]不全异。(2)只有[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]与[tex=0.857x1.286]s+r8LBAs3scxfl88DGExcg==[/tex]全异,[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]才不真包含于[tex=0.857x1.286]s+r8LBAs3scxfl88DGExcg==[/tex]。(3)[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]与[tex=0.857x1.286]s+r8LBAs3scxfl88DGExcg==[/tex]相容但[tex=0.786x1.286]TKU5UzNEMzEJwORo6mbEYA==[/tex]与[tex=0.857x1.286]s+r8LBAs3scxfl88DGExcg==[/tex]不相容。请推出[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]与[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]、[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex]与[tex=0.857x1.286]s+r8LBAs3scxfl88DGExcg==[/tex]、[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]与[tex=0.857x1.286]s+r8LBAs3scxfl88DGExcg==[/tex]的外延关系,写出推导过程,并将[tex=0.857x1.286]s+r8LBAs3scxfl88DGExcg==[/tex]的外延关系表示在一个欧拉图中。