假设正态总体[tex=6.0x1.286]/ZR0dAzaI7eKAw6bIvA7MwpDqCSuYOEmaTtlrlZ7K9Dq3LIAqxndmg7Srqig3x0U[/tex],[tex=5.786x1.286]mSwy1LlzIpZh/7u+rnVzC9EnwTiH9euTn7eiWJ2j04+x6Zff+rqFbpuPMeWBrGJS[/tex],且[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]相互独立;[tex=7.357x1.286]4bGv4GNhfHifuCST4hq27TUnKcULSEGkpmlzOaOCxYpERoxgf5hWAMaHNGJT6FVL[/tex]和[tex=6.429x1.286]ZBO5sFjiB9zbl+iHfnFejzSRQdr0ET1eL+e09RRBOQJV24fE+eVUcuyoI9CqVZ+w[/tex]是分别来自总体[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的简单随机样本,[tex=0.929x1.286]ZAhNd0JrcSurz1OlXw327Q==[/tex]和[tex=1.071x1.286]YdE70j7tnA4A/fKDJXvcfw==[/tex]为总体[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]样本均值和方差;[tex=0.857x1.286]V77uFwc0bxKcDA/4/HJMVw==[/tex]和[tex=1.071x1.357]rPCKOY0U/0WlI7UHVA0hAg==[/tex]为总体[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的样本均值和方差,而[tex=12.643x2.286]0qTzrdRCC9Cei4Mn5aXoBwCWsqWewXLISOPmCyqv+jofBdZ1o9F9erlq4DDxFcxCyjXHEeVSNIGvXsS1bTJWow==[/tex]是总体[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的联合样本方差. 证明:[tex=1.5x1.357]d9Q2+RNeOnxlKW/Htzx/FSAH7Ic/xsz4+oVUujOterw=[/tex]是[tex=1.0x1.286]51n47HV7nln8qIGpThl1pg==[/tex]的无偏估计量.
举一反三
- 设[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex],[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]相互独立,且[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]服从数学期望为150 , 方差为9的正态分布,[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]服从数学期望为100,方差为16的正态分布,求[tex=7.5x1.357]JgfvMEzlJt4TFydcPQ2gaw==[/tex],[tex=10.286x1.357]/kMGdCxDBv+iw/Cr+hQeUnIAq7x/u//czEtqpBiPB/0=[/tex]。
- 设随机变量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]都服从[tex=2.143x1.286]dboSCjP3Fn5+xkkJFCNE+A==[/tex]分布,证明: “[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]不相关”与“[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]独立”等价.
- 假设总体[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]服从正态分布[tex=3.857x1.286]JrKs5T7u6pQoQQeeNFM4wlqVD1ToGDgfRW4wVkSybdVGmoWGoPoU2WN8LLOUhxlv[/tex],[tex=7.143x1.286]4bGv4GNhfHifuCST4hq27TUnKcULSEGkpmlzOaOCxYrgowoOfBw3l4O1C2q07+LX[/tex]是分别来自总体[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的简单随机样本,[tex=0.929x1.286]ZAhNd0JrcSurz1OlXw327Q==[/tex]和[tex=1.071x1.286]8wtfUF0L5fpTSa30/FBLZw==[/tex]为样本均值和方差.证明:(1)样本均值[tex=0.929x1.286]ZAhNd0JrcSurz1OlXw327Q==[/tex]是总体[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的数学期望[tex=0.643x1.286]LHHF5r8Y9VBlpolr/GDm2w==[/tex]的有效估计量;(2)样本方差[tex=1.071x1.286]8wtfUF0L5fpTSa30/FBLZw==[/tex]是总体[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的方差[tex=1.0x1.286]51n47HV7nln8qIGpThl1pg==[/tex]的渐近有效估计量;(3)未修正样本方差[tex=1.071x1.286]nBOWZJXhhOBIR+/HwFiAug==[/tex](二阶样本中心矩)是总体[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]的方差[tex=1.0x1.286]51n47HV7nln8qIGpThl1pg==[/tex]的渐近有效估计量.
- 设[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]是两个相互独立的随机变量,[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]在[tex=2.929x1.286]kvrkODQf0L3CKREOEdSkuA==[/tex]上服从均匀分布,[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的概率密度为[tex=10.571x2.429]DRJq+C1mHjswrEZ8FtvX7HNGAPrBLJ6gzRGG2ilTN7MM55jZEydQmT0AUl0Qb5hAT5k9ols3J/KpgflWFdX4TQ==[/tex],求:(1)[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的联合概率密度;(2)[tex=4.714x1.286]dbgFLPFxgdKKXnbc/gnthjs3iie6rgn/UEwrXH27vHI=[/tex] .
- 设随机变量[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]的方差存在,证明:[tex=10.143x1.286]HG2ihwjcXTdzCTS/bC0QJsaC65j3BHkkW1/8B8OIxFg=[/tex]是[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]和[tex=0.857x1.286]h9C4nePGcGllh55hxKIsUw==[/tex]不相关的充分和必要条件.