举一反三
- 证明如果[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是整数且[tex=1.0x1.214]S08+KKG98HbrAJCN7f6pjg==[/tex]是奇数,则[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是奇数。
- 证明对于每个正实数[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex],存在一个正整数[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]使得[tex=3.286x1.071]tIthsYOGrDzHZZR97einAA==[/tex]
- 给出当[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是正整数而[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]是整数时,只用加法计算[tex=1.214x0.786]hQtbsuRWuv6lJKs6ClTDKA==[/tex]的递归算法。
- 下面的论证是否正确?这里假定要证明当[tex=1.0x1.214]Z5GZ0zNulrjGJKMFBGia4w==[/tex]是偶整数时[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是一个偶整数。假定[tex=1.0x1.214]Z5GZ0zNulrjGJKMFBGia4w==[/tex]是偶数,则存在某个整数[tex=0.571x1.0]CQkpoDeAAI+5FKIfe1wVCA==[/tex]使[tex=2.786x1.214]hF3blrEgoTPjLZIeo6kdeA==[/tex]。令[tex=2.214x1.0]LxW66Ap6viACecgu0bj/wQ==[/tex],其中[tex=0.357x1.0]5vVfAZliYwqMw8JaLE+iEA==[/tex]是某个整数。这证明了[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是偶数。
- 下面的“证明”错在哪里?“定理”如果[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]是实数,则[tex=1.0x1.214]cbJ6FMy5U1o431UmoPCwpw==[/tex]是正实数。“证明”令[tex=0.857x1.0]rEKpNtxe2g5BjOuuqHlSdw==[/tex]为“[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]是正数”,[tex=0.857x1.0]2T0fdlSZutPzGA1HapWNSg==[/tex]为“[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]是负数”,[tex=0.5x1.0]NSsYk+dfiqXGkmCPT5DyRg==[/tex]为“[tex=1.0x1.214]cbJ6FMy5U1o431UmoPCwpw==[/tex]是正数”。要证明[tex=2.0x1.0]LXdn1N7FszIRO4ZxpsGvQA==[/tex]为真,注意当[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]是正数时,[tex=1.0x1.214]cbJ6FMy5U1o431UmoPCwpw==[/tex]为正数,因为这是两个正数[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]和[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]的积。要证明[tex=2.357x1.0]R9VsDVKknphoBpRFtMw7rlixviYmfgOvDCURqfWXJbU=[/tex],注意当[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]是负数时,[tex=1.0x1.214]cbJ6FMy5U1o431UmoPCwpw==[/tex]是正数,因为这是两个负数[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]和[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]的积。证毕。
内容
- 0
证明:如果[tex=1.0x1.0]0GU//5PJyC1ZogOpKG0U3A==[/tex]表示不是完全平方数的第[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个正整数,则[tex=5.643x1.429]gf3D4+n4I+EACSWKQD1g4PJXlqFJHpyjMWHRGx2UAyo=[/tex],其中[tex=1.571x1.357]ZsDgkYtYKqR3cxt0YkcOzQ==[/tex]表示最接近于实数[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]的整数。
- 1
证明:只要[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是一个非负整数,则[tex=2.429x1.357]1iA0S9lCklDI0Nn5UvziIQ==[/tex]可被5整除。
- 2
[tex=2.357x1.357]HLbOsiEJc4IlAkVLNRXl3Q==[/tex]是阿贝尔群,[tex=2.714x1.214]hFofrIH8bsnX+Pd+KhTmrw==[/tex],[tex=0.571x0.786]WLga5RWgrUta8vWDwROpYA==[/tex]的阶为7,[tex=0.429x1.0]dX3JVuFw9r8t2KlWf+/Z+A==[/tex]的阶为5,则[tex=1.5x1.0]eZtVfYia3vQ8SVjhmElGew==[/tex]的阶为( ). 未知类型:{'options': ['7', '35', '12', '5'], 'type': 102}
- 3
需要用多少字节来编码[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]位的数据,其中[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]等于7
- 4
如果X满足[tex=1.0x1.214]uDLq1pltx8bidzPpXavtVw==[/tex]公理和[tex=1.0x1.214]HSZQQmMoQLPTE8orMMvtgA==[/tex]公理,则也满足[tex=1.0x1.214]9/dZqDJTFQ9zWNw2dnPh4g==[/tex]公理。