设`A`为`n`阶方阵,`A^*`是矩阵`A`对应的伴随矩阵,若`R(A^*)=0`,则`A`的秩为( )
A: `n`
B: `n-1`
C: 小于`n`皆可
D: 小于`n-1`
A: `n`
B: `n-1`
C: 小于`n`皆可
D: 小于`n-1`
举一反三
- 设`A`为`n`阶方阵,`A^*`是矩阵`A`对应的伴随矩阵,若`R(A^*)=0`,则`A`的秩为( ) A: `n` B: `n-1` C: 小于`n`皆可 D: 小于`n-1`
- 设`A`为`n`阶方阵,`\A^**`是矩阵`A`对应的伴随矩阵,若R(`\A^**`)=n,则`A`的秩为( ) A: `n` B: `n-1` C: 小于`n` D: 小于`n-1`
- 设`A`为`n`阶方阵,`A^*`是矩阵`A`对应的伴随矩阵,若`A`的秩为`n-1`,则`A^*`的秩为( ) A: `n` B: `n-1` C: `1` D: `0`
- 设`A`为`n`阶方阵,`A^*`是矩阵`A`对应的伴随矩阵,若`A`的秩为`n-1`,则`A^*`的秩为( ) </p></p>
- 设n阶矩阵A的伴随矩阵为A*,证:(1)若|A|=0,则|A*|=0;(2)|A*|=|A|^(n-1)