设 [tex=0.643x0.786]dFKQavWFzybe6S1GPVXNhQ==[/tex] 是群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 中任意固定元素,如下定义新的运算・[tex=8.929x1.429]3SmiMwNVPxdg4v1eHeuE2VxF9wNyMYLnodvw3kPSxHGsOxw4jkb5stNM9TvSK+i7[/tex], 证明 : [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 关于・运算构成群.
举一反三
- 设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是一个群,而[tex=0.643x0.786]dFKQavWFzybe6S1GPVXNhQ==[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]中任意一个固定的元素,证明:[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 对新运算[tex=3.786x1.0]qdFcMdOFIU5BdUlQV9p1h1K21OvjpGCN05A+gCa5iXk=[/tex]也作成一个群.
- 下列代数系统[tex=2.643x1.357]ceH+eYnXqUT340bMKzk9Jw==[/tex]中,其中[tex=0.786x1.071]sISe4zlsm5XRzMPtQa+aFQ==[/tex]是普通加法运算,试说明哪几个不是群.(1)[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]为整数集合; (2)[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]为偶数集合;(3)[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]为有理数集合; (4)[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]为自然数集合.
- 设[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex] 是群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的非空子集。证明: [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 中与[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]的每个元素可交换的元素构成[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的子群。
- 设[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex] 为群, [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]中的 2 阶元,证明 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 中与[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]可交换的元素构成[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的子群.
- 设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是有限交换群.证明:[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是循环群的充要条件是,[tex=1.357x1.357]Bii6ZD0BaRML5x2FHhnPeg==[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]中所有元素的最小公倍数.