设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是有限交换群.证明:[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是循环群的充要条件是,[tex=1.357x1.357]Bii6ZD0BaRML5x2FHhnPeg==[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]中所有元素的最小公倍数.
举一反三
- 设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是有限群,[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的任何真子群都是循环群,试问[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]一定是循环群吗?
- 设群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]只有有限个子群,证明[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]必为有限群。
- 设 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是交换群,那么 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的商群仍是交换群。
- 设 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是群。证明: [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是交换群的充分必要条件是映射[p=align:center][tex=5.643x1.286]vYnB+TvcXPCyhuHqL1f9eiqPnWI+P41J9NXNd2auPeI=[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的同构映射。
- 证明:若群 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 中每一个元素都适合方程 [tex=2.214x1.214]jX6m6TY3vI6QWjhU0nwLtg==[/tex], 则 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 是交换群。