一 根半无限长的均匀带电直线,电荷线密度为[tex=0.643x1.0]gAY52D2q5UNMih3DwtEBTg==[/tex].求通过端点垂直方向上[tex=0.857x1.0]PprcPEyAiv9a4WpGHzTcPA==[/tex]点的电场强度.
举一反三
- 一半无限长的均匀带电直线,线电荷密度为[tex=0.643x1.0]+D9NhKovEP8INGz+KZnr1A==[/tex]。试证明:在通过带电直线端点与直线垂直的平面上,任一点的电场强度[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]的方向都与这直线成[tex=1.429x1.071]7XkeUporeIEygerKJKke0Q==[/tex]角。
- 一个半径为[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]的均匀带电圆柱(无限长)的电荷密度是[tex=0.857x1.0]E5geom3zXj0UX9rHVYD7wA==[/tex]求圆柱体内、外的电场强度。
- 一个半径为 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]的均匀带电半圆环,电荷线密度为[tex=0.643x1.0]+D9NhKovEP8INGz+KZnr1A==[/tex] 。求:将此带电半圆环弯成一个整圆后,圆心处[tex=0.786x1.0]5SeCOJOzMwSNbX8MGx2Qsg==[/tex]点场强。
- 用高斯定理求线电荷密度为[tex=0.5x1.0]x1bygMLZjErpcp7AR7KkLQ==[/tex]的无限长均匀带电直线在空间任一点激发的场强[img=197x322]179ffa0aae109c9.png[/img]
- 电荷线密度为 [tex=0.643x1.0]+D9NhKovEP8INGz+KZnr1A==[/tex] 的“无限长”均匀带电细线, 弯成如图[tex=1.357x1.357]TWUgLpDrEXIKICMuiEQPjw==[/tex]所示形 状。若半圆弧 [tex=1.571x1.0]mCjAngcIqtveplNftuY0BQ==[/tex] 的半径为 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex],试求圆心 [tex=0.786x1.0]5SeCOJOzMwSNbX8MGx2Qsg==[/tex] 点的场强。[img=404x270]179c63ad6722d3a.png[/img]