• 2022-07-26
    假定直线[tex=0.714x1.286]LA74ioWWkXdGbHCtFk/Sog==[/tex]在[tex=1.5x1.286]OeIxCzxOjrNwqeWrgfpLuA==[/tex]平面上的投影方程为[tex=5.786x2.786]M/Yeox5bOq02SPK7XRukbzKJ76iF9RT1tNoZKwJTJs87xRHF32iMqFLBXILZGQqD6jFNmKM2B8VcsnvpGYGlnw==[/tex],而在[tex=1.571x1.286]gvYUUCutu7MliqekJB05Iw==[/tex]平面上的投影方程为[tex=4.857x2.786]M/Yeox5bOq02SPK7XRukb/LpYsLJyvGHPubel0xejpoPPBTljnD11xBvEI17SlI2B52kiqHzHVV5JBfKOxBtNQ==[/tex],求直线[tex=0.714x1.286]LA74ioWWkXdGbHCtFk/Sog==[/tex]在[tex=1.571x1.286]woV9XOBscX2hvkxmcnGdWw==[/tex]面上的投影方程。
  • 解:[tex=0.714x1.286]wbdAxWgHFhoV9XdVGDcK2w==[/tex]直线[tex=0.714x1.286]LA74ioWWkXdGbHCtFk/Sog==[/tex]在[tex=1.5x1.286]OeIxCzxOjrNwqeWrgfpLuA==[/tex]平面上的投影方程为[tex=5.786x2.786]VhEBbmW1dGqfizlLN55nbdwd50nVhlnnePyAKU/alI4g3lqqRHd+EUK72y/SpWuG8rGBR0xOtI3LYMsLuEPUKQ==[/tex],[tex=0.714x1.286]Mjp1ERIg12NQkOrp1BseMg==[/tex]直线[tex=0.714x1.286]LA74ioWWkXdGbHCtFk/Sog==[/tex]一定在投影柱面[tex=4.929x1.286]UncUlNbjzzAfaWUI1WD+5w==[/tex]上,同理,直线[tex=0.714x1.286]LA74ioWWkXdGbHCtFk/Sog==[/tex]也一定在投影柱面[tex=4.0x1.286]GGiHIW/7gXs1iLjwcta5/Q==[/tex]上,[tex=0.714x1.286]Mjp1ERIg12NQkOrp1BseMg==[/tex]直线[tex=0.714x1.286]LA74ioWWkXdGbHCtFk/Sog==[/tex]方程为[tex=5.786x2.786]M/Yeox5bOq02SPK7XRukbzKJ76iF9RT1tNoZKwJTJs9r6X1GcUp1Sl6riYJD1UQUSw3ji+ZBu2N/SsOdIiopgA==[/tex],消去[tex=0.5x1.286]asctJDWpGaq/ETe64ANZ1Q==[/tex]得到直线[tex=0.714x1.286]LA74ioWWkXdGbHCtFk/Sog==[/tex]在[tex=1.571x1.286]woV9XOBscX2hvkxmcnGdWw==[/tex]面上的投影方程:[tex=5.929x2.786]M/Yeox5bOq02SPK7XRukb5KRHCHrCGMWE9iMSpPPuxEuEsF+mVYFDds0tMMz2IPCMoafLzoXTJsJZZYKVkV6Kw==[/tex]

    举一反三

    内容

    • 0

      求点[tex=4.571x1.286]i4FNvHiXZ/EL3OfpBykowg==[/tex]到直线[tex=0.714x1.286]LA74ioWWkXdGbHCtFk/Sog==[/tex]:[tex=7.929x2.786]fnpmC2J6JmQBLyo5NmGAz1eqDScjjh+xasFpiMhfg/lrbIqnQEZatNxP6+5QFVSqLvFSyHWtWu5DiQCV+bUcIIlt3u0yfy8bt8GECPT7PRU=[/tex]的距离。

    • 1

      计算[tex=5.643x2.214]VRGxBAWkDwa0+cPFMVu6wTYV1lSKBPhn+I5RZIQs7UQ=[/tex],其中[tex=0.714x1.286]LA74ioWWkXdGbHCtFk/Sog==[/tex]为直线[tex=2.071x1.286]FAqTcYA8CahKhM7FlJ8how==[/tex][tex=2.857x1.286]EVugoY37whNmyGP1iZUqgQ==[/tex],[tex=2.929x1.286]XmXKtnP1fnjppiLalV5SSw==[/tex] .

    • 2

      求积分值 [tex=8.286x2.214]vP1GJUFQ47V0c7FZFARBJPPSzJIiZBpnWJ2w4xe+jaA=[/tex][tex=5.643x1.286]wcy4luLARwktrHr5dqkU7Rf/1CjN2lqcovv+6Dqrd8o=[/tex], 其中 [tex=0.714x1.286]LA74ioWWkXdGbHCtFk/Sog==[/tex] 为包围有界区域的闭曲线, [tex=0.929x1.286]9yLabwWeyn0cMD+fIBc3Rg==[/tex] 为 [tex=0.714x1.286]LA74ioWWkXdGbHCtFk/Sog==[/tex] 的外法线方向.

    • 3

      证明:[tex=7.714x2.786]0W5nri6oRolSBuS9Rv48HOzKBKEFKU83y2ckCvBVZA6aCSv6gU45SHhpdWd8hosg0nlOejBNlJ8O8jalo9ri6Q==[/tex],其中 [tex=0.714x1.286]LA74ioWWkXdGbHCtFk/Sog==[/tex] 为圆;

    • 4

      证明: 若函数 [tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex] 在光滑曲线 [tex=0.714x1.286]LA74ioWWkXdGbHCtFk/Sog==[/tex]: [tex=3.5x1.286]I3I/gqfybdZ+6p4QGuTmjQ==[/tex], [tex=3.429x1.286]BCyG7pb4TF5yNfsV1FvaDA==[/tex] ([tex=4.214x1.286]bEM27tRoTwIn7IbC4iihV2GSFbs9qwkAV3J/7f/n7QY=[/tex]) 上连续, 则存在点 [tex=4.929x1.286]FWRdgLEQjXRVdYgx/pe5QxDQgPs2G+RZ56XpJDpe/0Q=[/tex] 使得,[tex=6.071x2.214]IDrAZr7LF51v1uavnG+kKxcxEO7XduW/jisGkNaCYMs=[/tex][tex=5.214x1.286]Jhzbz10DrHhh6soBCYyYSBIe72gx6ZyltbcI2RRQSTY=[/tex], 其中 [tex=1.571x1.286]GXLMJ9JFdztrCh1E9aVWzZFYHtMpzIOWeTK1tHoSaw0=[/tex] 为 [tex=0.714x1.286]LA74ioWWkXdGbHCtFk/Sog==[/tex] 的长.