设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是数域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上[tex=2.357x1.071]QArHY/B/HPaeI4OFb8f5sA==[/tex]矩阵.证明:如果[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]行满秩,那么对于[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上任意一个[tex=2.571x1.071]Nl+BaacCCaNmsMtc2h/B6A==[/tex]矩阵[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex],矩阵方程[tex=3.143x1.0]W8v/znzuU8DImWEHck/+PA==[/tex]都有解,并且[tex=3.714x1.143]+6pTNX3+PNxXHFfN8PFKmg==[/tex]是它的解.
举一反三
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是数域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上[tex=2.357x1.071]QArHY/B/HPaeI4OFb8f5sA==[/tex]矩阵,证明:[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的秩为[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]当且仅当存在数域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上[tex=2.143x1.071]Rtxts52p4rdDLdHA6Amz2w==[/tex]列满秩矩阵[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]与[tex=2.286x1.071]Ef3ubbPzNaK2nOISNr/qww==[/tex]行满秩矩阵[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex],使得[tex=3.071x1.0]Mb/+JoHmaaZzuBXR7KsjSg==[/tex].
- [tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]与某个对角矩阵相似的充分必要条件是[input=type:blank,size:6][/input] . 未知类型:{'options': ['矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的秩等于[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]', '矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]有[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]个不同的特征值', '矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]一定是对称矩阵', '矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]有[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]个线性无关的特征向量'], 'type': 102}
- 证明:(1) 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex] 为矩阵,则[tex=4.286x1.286]oheUYwhZ0URiNEpsN7L7kA==[/tex]有意义的充分必要条件是[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex] 为同阶矩阵。(2) 对任意 [tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex],[tex=0.786x1.286]q1djlrfSWHAqH21hBgtrSw==[/tex] , 都有[tex=6.286x1.286]f9BmKY0KXh740nvID3nNj0fFKPsoX9X3zKZONqYCrR0=[/tex], 其中[tex=0.786x1.286]YggwMQ4w3PxfhkmL0NfgdQ==[/tex]为单位矩阵。
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶正定矩阵,证明[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的伴随矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]仍为正定矩阵.
- 设 3 阶矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值互不相同,若行列式[tex=3.071x1.286]FYCnFYQQa8C3I+O2sfSSGA==[/tex], 则[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的秩为 A: 0 B: 1 C: 2 D: 3