设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是数域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上[tex=2.357x1.071]QArHY/B/HPaeI4OFb8f5sA==[/tex]矩阵,证明:[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的秩为[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]当且仅当存在数域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上[tex=2.143x1.071]Rtxts52p4rdDLdHA6Amz2w==[/tex]列满秩矩阵[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]与[tex=2.286x1.071]Ef3ubbPzNaK2nOISNr/qww==[/tex]行满秩矩阵[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex],使得[tex=3.071x1.0]Mb/+JoHmaaZzuBXR7KsjSg==[/tex].
举一反三
- 一个矩阵称为行(列)满秩矩阵,如果它的行(列)向量组是线性无关.证明:如果一个[tex=2.357x1.071]QArHY/B/HPaeI4OFb8f5sA==[/tex]矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的秩为[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex],那么存在[tex=2.143x1.071]Rtxts52p4rdDLdHA6Amz2w==[/tex]的列满秩矩阵[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]和[tex=2.286x1.071]Ef3ubbPzNaK2nOISNr/qww==[/tex]行满秩矩阵[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex],使得[tex=3.071x1.0]hNGs1Px60d+kQ9QCRfyP3A==[/tex].
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是[tex=2.357x1.071]QArHY/B/HPaeI4OFb8f5sA==[/tex]矩阵.证明:[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是列满秩矩阵当且仅当存在[tex=0.5x0.786]ICKY+F5VdoSQrRn/wUUOyw==[/tex]级可逆矩阵[tex=0.643x1.0]Ft8KOBgb78fnKY0jEt4Rsg==[/tex],使得[tex=5.714x2.786]GOgGvXf8fpWrP7XGIdsj8/NUqPJl/9cX6USGFSTASsQOKHl4580Mpt6T6Dn85xpMOGmjKwp5eZciA0U/RdGbPg==[/tex].
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是[tex=2.357x1.071]QArHY/B/HPaeI4OFb8f5sA==[/tex]矩阵.证明:[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是行满秩矩阵当且仅当存在[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级可逆矩阵[tex=0.857x1.214]ChdusW5rAupjge6v/DGHRA==[/tex],使得[tex=4.643x1.357]RqsCL9/WuCBwDvrRjd44OA==[/tex].
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是数域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上一个[tex=2.357x1.071]QArHY/B/HPaeI4OFb8f5sA==[/tex]矩阵,证明:如果[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的秩为[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex],那么[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的行向量组的一个极大线性无关组与[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的列向量组的一个极大线性无关组交叉位置的元素按原来的排法组成的[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]阶子式不等于0
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是数域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上[tex=2.357x1.071]QArHY/B/HPaeI4OFb8f5sA==[/tex]矩阵.证明:如果[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]行满秩,那么对于[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]上任意一个[tex=2.571x1.071]Nl+BaacCCaNmsMtc2h/B6A==[/tex]矩阵[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex],矩阵方程[tex=3.143x1.0]W8v/znzuU8DImWEHck/+PA==[/tex]都有解,并且[tex=3.714x1.143]+6pTNX3+PNxXHFfN8PFKmg==[/tex]是它的解.