设λ是正常数,并且xy^λdx+x^λydy是其个函数u(x,y)的全微分,则λ=___________.
举一反三
- 设函数y=y(x)由方程2^xy=x+y所确定,则dy|x=0=() A: (ln2-1)dx B: (l-ln2)dx C: (ln2-2)dx D: ln2dx
- 设f(u)连续,且du(x,y)=f(xy)(ydx+xdy),则u(x,y)=______.
- 设y=x^(x)(x>0)则函数y的微分dy=?
- 函数\(z = {\left( {xy} \right)^x}\)的全微分为 A: \(dz = \left( { { {\left( {xy} \right)}^x} + \ln xy} \right)dx + x{\left( {xy} \right)^x}dy\) B: \(dz = \left( { { {\left( {xy} \right)}^x} + \ln xy} \right)dx + { { x { { \left( {xy} \right)}^x}} \over y}dy\) C: \(dz = {\left( {xy} \right)^x}\ln xydx + { { x { { \left( {xy} \right)}^x}} \over y}dy\) D: \(dz = {\left( {xy} \right)^x}\left( {1 + \ln xy} \right)dx + { { x { { \left( {xy} \right)}^x}} \over y}dy\)
- 验证下列P(x,y)dx+Q(x,y)dy在全平面内是某个函数u(x,y)的全微分,并求此原函数u(x,y):[tex=8.929x1.214]+Bv9d3kvB+awCTj+A3DPy76f9H6PKhnxrvjERsPgQUKstjkYN3M6bUOILXi9vjL2[/tex]