如果[tex=1.786x1.357]GYJ7X7XJijqizBuSGMrl3g==[/tex] 是偶函数,且 [tex=6.429x2.714]dzje8t+YXauzOFa/K9BVH2R2bIo62BX35IW+Q8phPgU=[/tex] 在[tex=3.143x1.357]LWB0MsfTDCFYtVxIGLgAyg==[/tex] 中收敛 [tex=3.714x1.357]2QKsSwVKzS1n2cdSrl8G+g==[/tex]证明[tex=11.071x1.357]/RdH3/cNA02QanXcOyRyEM6qDDjwhu9ovCVSRQsMjnoEgO7FZLNODHNb9gMUQ3vT[/tex]
举一反三
- 若:(1)函数 f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数;(2)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]有导数;(3)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数及函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数,则函数[tex=5.643x1.357]GmtX7Vop79exGU/rpqXUYw==[/tex]在已知点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]的可微性怎样?
- 设[tex=5.214x1.214]l2vYijvwphpA0Bdo8olvNhKvOVd4RCELKut0jj6S5qs=[/tex]是连续映射,Y是Hausdorff空间,证明:(1)集合[tex=9.357x1.357]QCqopxinhs+TvVYgLw48vVpO4x/Rie4gzAlmw62rJGM=[/tex]是X的闭子集;(2)如果A是X的稠密子集且[tex=3.714x1.357]fo4X83uQk0aLKgSpBjpSMw8oj58YdJ5bCiu5d4gfWQqZvgjwV7CYEcyqXJHmRmoq[/tex],则f=g。
- 若:(1)函数 f(x)在点[tex=0.929x1.0]cjoIbYuE/p4IqfLA8eA4ZA==[/tex]有导数,而函数g(x)在此点没有导数;(2)函数f(x)和g(x)二者在点[tex=0.929x1.0]cjoIbYuE/p4IqfLA8eA4ZA==[/tex]都没有导数,可否断定它们的和[tex=7.214x1.357]oX568MWmpJJk2c1dN8FEzQ==[/tex]在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数?
- 若:(1)函数 f(x)在点[tex=0.929x1.0]cjoIbYuE/p4IqfLA8eA4ZA==[/tex]有导数,而函数g(x)在此点没有导数;(2)在点[tex=0.929x1.0]cjoIbYuE/p4IqfLA8eA4ZA==[/tex]函数f(xr)和g(x)二者都没有导数,可否断定他们的积[tex=6.5x1.357]/gAVQ00H2rftxTI44M7tvg==[/tex]在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数?
- 设[tex=18.929x1.357]9ksvKuSQewmOUilvHJMqoUYJoOz1CizMvXxFigJ+rDUTdeJarfYdogNFQBYTi+Uxxe2Ahk7GHObYz2ikDRsC5W09MezIu5FwGXYhaa0QZnZCKP5wj1f8B5FAEGqINPNu[/tex]是[tex=1.0x1.214]q11VAhrhEcavde+jDhwTig==[/tex]的子群。(1)求|G|,给出G的每个函数。(2)说明函数g:g(1)=2,g(2)=3,g(3)=1不在G中,给出陪集G g。(3)证明G g≠g G.(4)在[tex=1.0x1.214]q11VAhrhEcavde+jDhwTig==[/tex]中,G有多少个不同的陪集?