求解[tex=1.5x1.357]H4fb56V4wWzgooinffzDSw==[/tex] 在[tex=2.929x2.786]eFznE1XPYC7OCr3Ivh+k01cfuxHAqjEbZJXWihm39Ks=[/tex]上的一次最佳一致逼近多项式。
举一反三
- 试利用 Gram-Schmidt 正交化方法, 求 [tex=2.0x1.357]AUoDsQBgen8/+sL3yGoyYA==[/tex] 上带权[tex=1.5x1.357]H4fb56V4wWzgooinffzDSw==[/tex]的三次正交多项 式系, 并利用它求 [tex=4.929x1.357]zJrwSJ1TaPN2VKg5phxUWw==[/tex]带权 [tex=1.5x1.357]H4fb56V4wWzgooinffzDSw==[/tex]的最佳三次平方逼近多项式.
- 试分别求函数[tex=5.929x1.643]fxDGdnq1lBj5l3WzRHXLGL/MwU1AGl8HrbvGg6XZp4g=[/tex]在区间[tex=2.0x1.357]AUoDsQBgen8/+sL3yGoyYA==[/tex]上的一次最佳一致逼近多项式和一次最佳平方逼近多项式.
- 求函数[tex=6.857x1.357]nak6ML04uR+od/+ZzxudIIjirfgqfkUMao0UizaDc8o=[/tex]在[tex=1.929x1.286]5WiKxiqIs2aMQ1aNQurkGw==[/tex]上的一次最佳一致逼近多项式,并求其偏差。
- 求[tex=4.071x1.286]L+NsFEjW0qR7BA+7rvluhcMNQP6xR3xPry8QtsDOq+8=[/tex]在[tex=1.929x1.286]5WiKxiqIs2aMQ1aNQurkGw==[/tex]上的最佳一次逼近多项式。
- 求[tex=8.5x1.286]X5vdjNqWeJp5+NZyaW4Ri84IjBcX0kp4LZZzisz6C9w=[/tex]在区间[tex=1.929x1.286]5WiKxiqIs2aMQ1aNQurkGw==[/tex]上的三次最佳一致逼近多项式。