两个$n$阶实对称矩阵相似的充分必要条件是( )。
A: 它们合同
B: 它们的特征值都是实数$\lambda_{1},\lambda_{2},…, \lambda_{n}$,且两两不等
C: 它们的特征值都是实数$\lambda_{1},\lambda_{2},…, \lambda_{n}$
D: 它们都是正交矩阵
A: 它们合同
B: 它们的特征值都是实数$\lambda_{1},\lambda_{2},…, \lambda_{n}$,且两两不等
C: 它们的特征值都是实数$\lambda_{1},\lambda_{2},…, \lambda_{n}$
D: 它们都是正交矩阵
举一反三
- 设\( A \)为\( n \)阶可逆矩阵, \( \lambda \)是的\( A \)特征值,则\( {A^*} \)的特征根之一是( )。 A: \( {\lambda ^{ - 1}}|A{|^n} \) B: \( {\lambda ^{ - 1}}|A| \) C: \( \lambda |A| \) D: \( \lambda |A{|^n} \)
- 设\( A,P \)是可逆矩阵,\( \beta \)是\( A \)的属于特征值\( \lambda \)的特征向量,则矩阵\( {P^{ - 1}}AP \)的一个特征值和对应的特征向量是( ) A: \( {\lambda ^{ - 1}},P\beta \) B: \( {\lambda ^{ - 1}},{P^{ - 1}}\beta \) C: \( \lambda ,P\beta \) D: \( \lambda ,{P^{ - 1}}\beta \)
- 求以 [tex=2.357x1.214]u/hcg1/55F2pvtGMeEw9pw==[/tex] 和 [tex=3.071x1.214]5sVa6GD0b7ovTx2rohhG1G+NFmzyMDXRjuEJawew8Wg=[/tex]为特解的最低阶的常系数线性齐次方程. 解 由 $y=3 x$ 为特解可知 $\lambda_{1}=0$ 至少是特征方程的二重根. 由 $y=\sin 2 x$ 为特解可知特征方程有共功特征根 $\lambda_{2,3}=\pm 2 i .$ 所以特征方程为 $(\lambda-0)^{2}(\lambda-2 i)(\lambda+2 i)=0$, 即 $\lambda^{4}+4 \lambda^{2}=0 .$所以微分方程为 $y^{(4)}+4 y^{\prime \prime}=0 .$
- 两个 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵相似的充要条件是 未知类型:{'options': ['它们合同', '它们的特征值都是实数\xa0[tex=5.786x1.214]oNH2de8I1XfFs1vBi4Ose/m3xb4ZXIOWJL213dkS9oZGcEJxwIaoBVvUWo01TUpn[/tex]', '它们的特征值都是实数\xa0[tex=5.786x1.214]oNH2de8I1XfFs1vBi4Ose/m3xb4ZXIOWJL213dkS9oZGcEJxwIaoBVvUWo01TUpn[/tex]\xa0且两两不相等', '它们都是正交矩阵'], 'type': 102}
- 设` A `为`n`阶实对称矩阵,` P `是` n `阶可逆阵,已知` n `维列向量` \alpha `是` A `的属于特征值` \lambda `的特征向量。则` (P^{-1}AP)^T `属于特征值` \lambda `的特征向量是( ) A: `P^{-1}\alpha`; B: `P^T\alpha`; C: `P\alpha`; D: `(P^{-1})^T\alpha`。