令[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]是数域[tex=0.643x1.0]J+LW/0i6Fe+lWEmBUgT8zg==[/tex]上向量空间[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的一些线性变换所成的集合.[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的一个子空间[tex=1.0x1.0]0e+76hgEqXhGRszRQWFSzQ==[/tex]如果在[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]中每一线性变换之下不变,那么就说[tex=1.0x1.0]0e+76hgEqXhGRszRQWFSzQ==[/tex]是[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]的一个不变子空间.如果[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]在[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]中没有非平凡的不变子空间,则是不可约的,设[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]不可约,而[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]是[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的一个线性变换,它与[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]中每一线性变换可交换.证明[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]或者是零变换,或者是可逆变换.
举一反三
- 令[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]是数域[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上向量空间[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的一些线性变换所成的集合。[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的一个子空间[tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]如果在[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]中每一线性变换之下不变,那么就说 [tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]是[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]的一个不变子空间。说[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]是不可约的,如果[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]在[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]中没有非平凡的不变子空间。设[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]不可约,而[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]是[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的一个线性变换,它与[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]中每一线性变换可交换。证明,[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]或者是零变换,或者是可逆变换。 [ 提示 : 令 [tex=5.0x1.357]o2+7Gdi3IvIUF7x5ByZZytJ/TK5JsUQ7dq1ESJYAz0s=[/tex],证明[tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]是 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]的一个不变子空间。
- 设[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]是数域[tex=0.643x1.0]Ft8KOBgb78fnKY0jEt4Rsg==[/tex]上[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]维线性空间,证明:[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的与全体线性变换可以交换的线性变换是数乘变换.
- 证明:如果线性空间[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的线性变换[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]以[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]中每个非零向量作为它的特征向量,那么[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是数乘变换.
- 设[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]是域[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上的有限维线性空间,[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]上的一个线性变换,[tex=1.0x1.0]0e+76hgEqXhGRszRQWFSzQ==[/tex]是[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的一个子空间,用[tex=2.643x1.214]KdJTfdOLEBWMXQir5AfhBQ==[/tex]表示[tex=1.0x1.0]0e+76hgEqXhGRszRQWFSzQ==[/tex]在[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]下的原象集,证明:[tex=2.643x1.214]KdJTfdOLEBWMXQir5AfhBQ==[/tex]是[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]的一个子空间,且[tex=15.571x1.571]lBXXZYMMrxJ2+/5vAU9EvVvBGnLtY5JG8CbyUBVipe1uKDCQ1/KMuX64J9SLCi3ar2m76lz6zTaMR/0PayL319rvQLU4zhEdMizyHv9JVIUABc0jzkHxvW8wRmhsuQQnu66lpQQHQ5Y6rNUSTKc/IJw3GVC2rz/DOYqBVzfdYTs77YU3Muuc0/toyWs+9rVf2Yiw28jepiPWOuG3qlOl0Q==[/tex]。
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是线性空间[tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex]上的可逆线性变换.证明:1) [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值一定不为0;2) 如果[tex=0.643x1.0]7dwHQGHL24uGORI8NryViw==[/tex]是[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值,那么[tex=1.643x1.357]7hXLKuNcz29qRRA2zjn4rA==[/tex]是[tex=1.714x1.214]d+9NDUvA5ZDrRGeFW5fxcQ==[/tex]的特征值.