举一反三
- 设 [tex=1.0x1.214]oRPUaRXqLpUA70qsP8lMlg==[/tex] 是 [tex=1.214x1.214]aPEXl5NwbsoRJ+ZYVndSJQ==[/tex] 到 [tex=1.214x1.214]SQWwo8FHSU71fR9D9DebOA==[/tex] 的全连续算子, [tex=1.0x1.214]vGZq/wDsMK1rYIWiaqRL2g==[/tex] 是 [tex=1.214x1.214]SQWwo8FHSU71fR9D9DebOA==[/tex] 到 [tex=1.214x1.214]jmQSlIEXPwdaNuHVxT7/kA==[/tex] 的有界线性算子,则 [tex=1.929x1.214]z7dRYqdaR4UDYmn8pTJeiA==[/tex] 是 [tex=1.214x1.214]aPEXl5NwbsoRJ+ZYVndSJQ==[/tex] 到 [tex=1.214x1.214]jmQSlIEXPwdaNuHVxT7/kA==[/tex] 的全连 续算子.
- 如果X满足[tex=1.0x1.214]uDLq1pltx8bidzPpXavtVw==[/tex]公理和[tex=1.0x1.214]HSZQQmMoQLPTE8orMMvtgA==[/tex]公理,则也满足[tex=1.0x1.214]9/dZqDJTFQ9zWNw2dnPh4g==[/tex]公理。
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- 已知总体X的密度函数为[tex=7.714x2.0]W6lO2xb08XtfGU+i+eWnnw0CYD2q/WnshEaqki8GpVMOeqy/otZWzfjDp5+q5K1zhcE5PYDwCsbkps/Ai80OlAWY2LzwO27YO5WUcjykYsTiv/aqhrPzMG7mjSWssq7cUfDYwL/Ba6ELGNi0tzZLIQ==[/tex],[tex=1.214x1.214]Eh13YTQY62V2jiw99mPjtA==[/tex],[tex=1.214x1.214]CN6DjqLuf+rqHGJDNNgdBg==[/tex],...,[tex=1.286x1.214]cmYIy5GvvFOF7TsVoM1mWQ==[/tex]为来自总体X的简单随机样本,[tex=0.643x1.286]LTFTesLIJc93sanD/R60mA==[/tex]为大于0的参数,[tex=0.643x1.286]LTFTesLIJc93sanD/R60mA==[/tex]的最大似然估计量为[tex=0.643x1.286]6aLR5cs+zL1ZJ/ZaZm5bybopi938kIu79zfe9WEwAKg=[/tex]。(1)求[tex=0.643x1.286]6aLR5cs+zL1ZJ/ZaZm5bybopi938kIu79zfe9WEwAKg=[/tex];(2)求[tex=1.429x1.286]kAj2yPcF3eKnwjhncaSvSHCAvuBvmcXbhaVW7sTnRdA=[/tex],[tex=1.429x1.286]qRLvccS7Ogyct3oif4OV1P/xMQdG7ad8lpt2hyG7+nU=[/tex]。
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立且分别服从正态分布 [tex=3.929x1.571]KMSpdLUrzTZbo8d74HAk8FbVxg68gpb5/5ajUKF2VF8=[/tex] 与 [tex=4.929x1.571]vITFrONYi9vTgxZubaXE/606xZJXhEVf4YJxs/C0lv3ztzCWG5hXlsHlKn47VGgO[/tex] 其中 [tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex] 是未知参数且 [tex=2.714x1.214]K7gs4SMv72qkFX6M8vQ8sQ==[/tex] 设 [tex=3.929x1.143]XoGO/NUY9yroueHgn6xYjg==[/tex](1) 求 [tex=0.714x1.0]RRR4SYyCqv01G5bWEEMPdw==[/tex] 的概率密度 [tex=3.929x1.571]QSa9xM8zR84ZclM8TLXFoRYzBA2gjTuGeqEi734w/aO0SiQT4mz0yN0iGYjpe0xu[/tex](2) 设 [tex=6.857x1.357]a6K4oVQGHT03clYEylSxIJyKSsiulc6IoyVPWx6jpAFk6f363CMMNEwCyDsmWTQn[/tex] 为取自总体 [tex=0.714x1.0]RRR4SYyCqv01G5bWEEMPdw==[/tex] 的一个简单随机样本,求 [tex=1.0x1.214]+33urkkz3/Nyr4sGrqM3/w==[/tex] 的极大似然估计量 [tex=1.286x1.429]58aCqm2/0PQFsxVDTTWuqx4eQQp3szavlntsU82NQzo=[/tex](3) 证明 [tex=1.0x1.214]58aCqm2/0PQFsxVDTTWuqwUzlefMWYw0D3nyGgr3g78=[/tex] 为 [tex=1.0x1.214]+33urkkz3/Nyr4sGrqM3/w==[/tex] 的无偏估计量.
内容
- 0
设随机变量 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 服从參数为 [tex=1.929x1.0]xXDCmWq47DQFjvGpa+qhxA==[/tex] 的指数分布,定义随机变量 [tex=1.214x1.214]saHhquVaAJ/mHfO0s1ML8g==[/tex] 如下:[tex=13.429x2.929]n7MYqQ4KxjX4tqxTB2ivvjxOkvhNhVwws+vaSG56sdG4HhMY/N4CTY/gTM6QZ6sW+px8rOtehZPUzU4GFbXqUfOkQPvtBx93zMQaMcWZhKII9GLgA3u24qxkjuEXG/jRtlDK7a9xYfU3acRrUuQ/hg==[/tex]求 [tex=1.214x1.214]aPEXl5NwbsoRJ+ZYVndSJQ==[/tex] 和 [tex=1.214x1.214]SQWwo8FHSU71fR9D9DebOA==[/tex] 的联合分布列.
- 1
[tex=22.0x1.357]LHJ+y85YXU3v8GHWdrdQw3Wkm42jO1uuQ9ReIJQjcZKuQS9dt8xQcTgSBjKkS3fb[/tex][color=#000000][b],[/b][/color][color=#000000][b]求 [/b][tex=3.143x1.214]oFObQtwM9vyjjWL7fjyhww==[/tex][/color][color=#000000][b]全不发生的概率.[/b][/color] A: 3/8 B: 7/9 C: 5/9 D: 5/8
- 2
设随机变量X的概率密度为[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex],求[tex=2.714x1.214]jacSJ4coCvuTfFjPJkXs5g==[/tex]的概率密度.
- 3
设随机变量X的密度函数为[img=572x74]1791bc8f97085d2.jpg[/img]试求:(1)常数A;(2)[tex=6.714x1.357]AyFmD19eLybEpNdIrC346g==[/tex]
- 4
设随机变量X与Y相互独立且均服从[tex=2.786x1.357]8J65g2h9ZFpY6fLUQihNfQ==[/tex],试求[tex=1.5x1.0]L5bzyUIaFHXibCzVPmrejw==[/tex][tex=2.214x1.143]taRipPt/iaQDuxjQtp9vbQ==[/tex]的密度函数.