• 2022-06-29
    设位于第一象限的曲线[tex=3.714x1.286]ILxTGSNsFVqbb4UrB1q2og==[/tex]过点[tex=3.429x2.214]svxlIEBXdNxoqp6wzeigQBhZak6lSnabP7YC5AuQE7OH7PGQAXJ6MVDyIv1rIvWb[/tex],其上任意一点[tex=3.0x1.286]kyujQA9JEEfOzSysFBnMcw==[/tex]处的法线与[tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex]轴的交点为[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex],且线段[tex=1.571x1.286]+40+xgx+PPxliwZt1F/RBA==[/tex]被[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴平分。(I)求曲线[tex=3.714x1.286]ILxTGSNsFVqbb4UrB1q2og==[/tex]的方程;(II)已知曲线[tex=3.786x1.286]BQBaxI8k9F73aCnSHszVhg==[/tex]在[tex=2.071x1.286]dE9QZiXxivv7bu3TxEuD0A==[/tex]上的弧长为[tex=0.357x1.286]O1PzqaL1+AfC/NERqj1Zew==[/tex],试用[tex=0.357x1.286]O1PzqaL1+AfC/NERqj1Zew==[/tex]表示曲线[tex=3.714x1.286]ILxTGSNsFVqbb4UrB1q2og==[/tex]的弧长[tex=0.5x1.286]r65Ank8E1dV+BtDCLn5S+w==[/tex]。(本题满分12分)
  • 举一反三