未知类型:{'options': ['[tex=2.929x1.357]zC2sUq2FVHT6ML2r+d0TSA==[/tex]', '[tex=2.929x1.357]LywYpFx2ldCQ8Gg2MwlK4g==[/tex]', '[tex=2.929x1.357]caiMPTPQ+q4cVnb/XIYcZA==[/tex]', '[tex=2.929x1.357]ajTSweTrzW/b60pyQUDvkQ==[/tex]'], 'type': 102}
举一反三
- 设函数 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]和 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]定义在 [tex=4.786x1.357]WafKDm5071vVz9IYJgBhj8LbdrnQF2M50OcMtr5E7Yg=[/tex] 上. 若 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是连续函数且 [tex=3.714x1.357]Y7HtJ7aZzdxpsKTCD2x13A==[/tex], 而[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]有间断点,则必有间断点的是 未知类型:{'options': ['[tex=2.286x1.5]+7gmNwIfHgWBxW35+LfqMA==[/tex]', '[tex=2.143x2.714]6IwMH3IpMM2cqo+IVLu0MyC7VjzP7iTmxRmXjUFWT54=[/tex]', '[tex=2.929x1.357]caiMPTPQ+q4cVnb/XIYcZA==[/tex]', '[tex=2.929x1.357]LywYpFx2ldCQ8Gg2MwlK4g==[/tex]'], 'type': 102}
- 若[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在[tex=0.929x1.0]XQ8c0totc8uufRPOvpPxwQ==[/tex]点连续。函数[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]在[tex=0.929x1.0]XQ8c0totc8uufRPOvpPxwQ==[/tex]点间断,能否断言:[tex=2.929x1.357]caiMPTPQ+q4cVnb/XIYcZA==[/tex]在[tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex]处间断
- 设[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]和[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]在[tex=4.643x1.357]3+NDETjbtRnj+mD3xG2zviOhqLdK3LTtKMvqcRw22dQ=[/tex]内有定义. [tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]为连续函数,且有[tex=6.0x1.357]eMdLm0aupmroh4AD2Off2l/++rg5PISyWJ4ez12q/zk=[/tex]间断点,则 未知类型:{'options': ['[tex=2.929x1.357]Ifn2/Vkg+5Q0HdD4uSPLbg==[/tex] 必有间断点', '[tex=4.214x1.357]o3Bw5UdpDWV+tnq0BL83zw==[/tex]\xa0必有间断点', '[tex=2.786x1.5]YxHI4bYt6TreduSyYRRkgA==[/tex]必有间断点', '[tex=2.929x1.357]caiMPTPQ+q4cVnb/XIYcZA==[/tex]必有间断点'], 'type': 102}
- 设 [tex=7.571x1.5]X32BZkoASxbtb2aaoJs9nw/qByzpXKKCYfi5/qPgimQ=[/tex], 求 [tex=2.929x1.357]caiMPTPQ+q4cVnb/XIYcZA==[/tex] 和 [tex=2.929x1.357]LywYpFx2ldCQ8Gg2MwlK4g==[/tex].
- 设[tex=9.571x3.643]I4MAI/mdXaMJHZs90dPjl6TVJnmcbzYYzfrTkjo89kexEkazsvUQcZDSws51lEzURkzVmPHqYDXLNZJGCWqWsQ==[/tex][tex=3.571x1.357]PNsv7gu9aC2e0xANfiodWQ==[/tex] ,求[tex=2.929x1.357]caiMPTPQ+q4cVnb/XIYcZA==[/tex]和[tex=2.929x1.357]LywYpFx2ldCQ8Gg2MwlK4g==[/tex].
内容
- 0
若[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在[tex=0.929x1.0]XQ8c0totc8uufRPOvpPxwQ==[/tex]点连续。函数[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]在[tex=0.929x1.0]XQ8c0totc8uufRPOvpPxwQ==[/tex]点间断,能否断言:[tex=2.929x1.357]LywYpFx2ldCQ8Gg2MwlK4g==[/tex]在[tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex]处间断[br][/br]
- 1
已知[tex=21.714x2.786]zFcYl3cMzE2lGpTI0EOK57MO2f+AY3WuKMoxOhcc7MKflTzh6YELgPdCKMzNDszIsiYoeq83rVJhhKjP3IlwEkzCBquT3dFxJjDLkhnsA8Xh6N0cGOobZKJ4agQuzx/d09s1qpydOsfDv6p7o99GV7cNs9RTMbhVjemYbNMBF9jhnrq6V+PKakNVBoqtlPrn1lSS0ewYcUyiNU2CNOyZIkxfk8vLSl8GKKfmGr/7bQM=[/tex] 求[tex=2.929x1.357]caiMPTPQ+q4cVnb/XIYcZA==[/tex]和[tex=2.929x1.357]LywYpFx2ldCQ8Gg2MwlK4g==[/tex]
- 2
求函数[tex=3.286x1.429]kdT+eIE7CHPynuN6CaN40g==[/tex](抛物线)隐函数的导数[tex=1.071x1.429]BUw1BPFU3fsJlAl/vt9M9w==[/tex]当x=2与y=4及当x=2与y=0时,[tex=0.786x1.357]Hq6bf3CacUy07X+VImUMaA==[/tex]等于什么?
- 3
周期函数[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]的周期为[tex=1.071x1.0]cWYnFY7tUlCT6WhMhv7goA==[/tex],试将f(x)展开成傅里叶级数,如果f(x)在[tex=2.929x1.357]FPqH6WHujNUJq9Xq0SIplg==[/tex]上的表达式为:[tex=3.929x1.5]wwWic7scd5c6929ljvvkuQ==[/tex][tex=7.0x1.357]Oy5aLxKJPd5t68LIQjG2E0wMwRmACKgIr/D8IhaESKI=[/tex] .
- 4
判断下列命题是否为真:(1)[tex=3.643x1.357]/5abqJjwKZ1qr+6hsVFF5EBvfq3ggOFNlHMClz0h9nk=[/tex](2)[tex=2.929x1.357]rGJpyjIjJpbcoBTWxP0Jiw==[/tex](3)[tex=4.5x1.357]2wycHMoqU83MyEp17iBils58bR7YLuCTI2G9NVAdlfY=[/tex](4)[tex=5.214x1.357]CTz2gu+IIm1GgNmYMGaduCRtA41wnW4WqwRWwEhq6aA=[/tex](5)[tex=4.857x1.357]1DcE2BMMOaZhTuxR/mjgsboXxfg5ET59Dp4I/jjEDuw=[/tex](6)[tex=4.643x1.357]BSryrsQYOvTP2hTWRu6t4nAuJwlSs4L9jaq70EpB+Us=[/tex](7)若[tex=6.0x1.357]y0IZLUnBO88nR8WBZYvd7QXv5S1OMINV5cQNzPyiyAc=[/tex],则[tex=3.429x1.357]1brfPwTkVVIX4GfoMIUskA==[/tex](8)若[tex=7.643x1.357]MhLfJXZnhbXiB0x3oNtFzThV4Y1mJxe1VYr7PkJE/T6hmTD3WWp+UxbNwvUQ6DHk[/tex],则[tex=4.143x1.357]LZUA94ISo1po5HWsOVeBCjo0rMvj7uw3bGw5HiZenrI=[/tex]