• 2022-06-29
    设 [tex=2.0x1.214]vnzjVhyzo/NIhVUgFyjLlA==[/tex] 都是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶半正定实对称矩阵, 求证: [tex=2.786x1.143]Px4s+PosevWooBpZPidJvg==[/tex] 是正定阵的充要条件是 [tex=4.714x1.357]WYQJasqsDjDS3SCBMUY9l3YnCxx5ZNEcvZ7F9d3HpRU=[/tex]
  • 注意到[tex=2.786x1.143]Px4s+PosevWooBpZPidJvg==[/tex] 是半正定阵, 故它是正定阵当且仅当 [tex=4.929x1.357]HlIt1TMlBPxEPwStnTjtJw==[/tex], 也当且仅当 [tex=4.714x1.357]WYQJasqsDjDS3SCBMUY9l3YnCxx5ZNEcvZ7F9d3HpRU=[/tex]

    内容

    • 0

       设 [tex=2.0x1.214]vnzjVhyzo/NIhVUgFyjLlA==[/tex]均为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实对称正定矩阵,证明: 如果[tex=2.286x1.143]t7MnLwUVtUaEIXH0lrj5CA==[/tex] 正定,则 [tex=4.214x1.357]rysVOh2/INqRc+V5bilDiw==[/tex] 亦正定.

    • 1

      设 [tex=2.0x1.214]vnzjVhyzo/NIhVUgFyjLlA==[/tex] 都是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶正定实对称矩阵, [tex=0.5x0.786]hycNLgozeED/VkKdun7zdA==[/tex] 是正实数, 求证:(1) [tex=7.143x1.429]vuuYk+Or29GujP/Qz4vA68Bt85yjNxvSS2/0L3kJCGg=[/tex] 都是正定阵;(2) 若 [tex=0.857x1.0]PvQ1rNj9zmhWbdNmDhnQhA==[/tex] 是非异实矩阵, 则 [tex=2.714x1.143]cj6s1EAz2qId7nsYhg+QFoaLXS6ATfSBB2ieRp7K6jE=[/tex] 是正定阵;(3) 若 [tex=2.286x1.143]iJ/kX6H3zlNBT5gr/UbiHQ==[/tex] 是正定阵, 则 [tex=4.214x1.357]t/PHzFoVTK0rx/Hr20JwvZrBq3O0wbfTPk8CIGQ1as8=[/tex] 也是正定阵.

    • 2

      设[tex=2.0x1.214]vnzjVhyzo/NIhVUgFyjLlA==[/tex]为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶正定矩阵,证明 [tex=2.286x1.0]cODRs3LlUK/sz34bAVFlUg==[/tex] 也是正定矩阵。 

    • 3

      设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实矩阵, 若对任意的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维非零实列向量 [tex=0.643x0.786]hlJJ6/DUY+n2/FE6M2JdRA==[/tex], 总有 [tex=4.143x1.214]llbZOzaSxsy88gIN6zZS7XSC62cY4voQ0PZXa9I1yOo=[/tex], 则称 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为亚正定阵. 下设 [tex=2.0x1.214]vnzjVhyzo/NIhVUgFyjLlA==[/tex] 都是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶亚正定阵, [tex=0.5x0.786]hycNLgozeED/VkKdun7zdA==[/tex] 是正实数, 求证:(1) [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是亚正定阵的充要条件是 [tex=2.571x1.286]hTkVgseCfVyG3CpmN2i9umj6RIPC/RC6hUw9y1wDYOo=[/tex] 是正定阵;(2) [tex=8.429x1.429]qkVfeKzMFQljRCkvkYjBocoW0SmIGmchDjv2AWYo84uA9hdfp0ylP72pc/tnRAu5[/tex] 都是亚正定阵;(3) 若 [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶非异实矩阵, 则 [tex=2.5x1.143]NG5DOe/S5ZBvb+Wli+5nT0c7N/+Cq6b0Efr0+CJQRaY=[/tex] 是亚正定阵;(4) 若 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 是对称矩阵且 [tex=2.286x1.143]iJ/kX6H3zlNBT5gr/UbiHQ==[/tex] 是亚正定阵, 则 [tex=4.214x1.357]t/PHzFoVTK0rx/Hr20JwvZrBq3O0wbfTPk8CIGQ1as8=[/tex] 也是亚正定阵.

    • 4

      设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵, 求证:(1) 若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 可逆, 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为正定阵的充要条件是对所有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶正定阵 [tex=6.571x1.357]pwQb9ceT2+qsbXbi+6dIl/jgx7HDqG8OMKcZZrhVcXy6+JovSSXitpjCbh6SDQEN[/tex](2) [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为半正定阵的充要条件是对所有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶半正定阵 [tex=6.571x1.357]pwQb9ceT2+qsbXbi+6dIl8wUbDZMgCOnJA1lQifZKR+Dh2C+JkyFhRzqn66dyW91[/tex]