设[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]为[tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex]矩阵,[tex=0.929x1.0]GTnOCR9hNPsOuxGSyBGTAE4D+bwdNZdKWKqAkIkho7A=[/tex]为[tex=2.357x1.071]PYiKLkN+yaGNaxGioBcX3w==[/tex]矩阵。证明:[tex=3.071x1.0]SFtE7oQFQ9FXwtal0cXwtQ==[/tex]的充分必要条件是[tex=0.929x1.0]GTnOCR9hNPsOuxGSyBGTAE4D+bwdNZdKWKqAkIkho7A=[/tex]的每一列向量是齐次线性方程组[tex=2.786x1.0]lWNmYgvtPidbb+JOL7O/g4tJE69wp8AXeBhpCQt47/k=[/tex]的解。
举一反三
- 证明 : [tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex]矩阵[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]和[tex=0.929x1.0]GTnOCR9hNPsOuxGSyBGTAE4D+bwdNZdKWKqAkIkho7A=[/tex]等价[tex=6.0x1.357]bMRrINhuwlMbjrHDeWypoq3IQ7QclgeLoMmm5iONK3lL6EtObbet4fAi1sH8Hks9c6PHJdjh25JURieyVlaheBiPmz+DyVUgv1wp3+YvO9g=[/tex].
- 设 [tex=0.929x1.0]FV0k2T/xaj6dPCbFnkB3/g==[/tex]和[tex=0.929x1.0]ep004cu6Ev4qhlMpamsNGg==[/tex]是两个同阶矩阵,证明以下命题 设[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]和[tex=0.929x1.0]GTnOCR9hNPsOuxGSyBGTAE4D+bwdNZdKWKqAkIkho7A=[/tex]是两个对称矩阵,则[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]和[tex=0.929x1.0]GTnOCR9hNPsOuxGSyBGTAE4D+bwdNZdKWKqAkIkho7A=[/tex]的和与差必为对称矩阵.
- 设[tex=0.929x1.0]JkZEjSnuwtkZlFnZMXvQ5Q==[/tex]为[tex=2.714x1.071]Xa6YzCV9VTlW9p4lLOpktw==[/tex]矩阵,如果矩阵[tex=6.143x1.357]sb0lI+O+hg9lDaI90Oub4JkVwgoQwUeWOJ5eCSgwqeWiy5uq90e5frG0SZbGhn8x8L+iUg8dSz8qE5s7bm+0UG+nJovMWLop6tcSEeVuHtygXSNTlKd+U8XJKdZ8Qi3N[/tex] ,试证 :当[tex=2.429x1.071]8zpXB85KiofkRevQFrdlFA==[/tex] 时,矩阵 [tex=0.929x1.0]GTnOCR9hNPsOuxGSyBGTAE4D+bwdNZdKWKqAkIkho7A=[/tex]为正定矩阵。
- 设[tex=0.929x1.0]r5Haq7W1lVGBc4dFEM2Zk1042rAqwO2NsSIOA9UOXzQ=[/tex]是[tex=2.643x1.286]Pcp8G3f9iSqumpymQTeO6g==[/tex]矩阵,[tex=0.929x1.0]k4XxnokJDFH17b6cU904x5y0XoeEFbvPcEEIqbrGwnU=[/tex]是[tex=2.286x1.286]LSTHw8W9yMi88yrn1vdMYQ==[/tex]矩阵[tex=0.929x1.0]88UwAOJavAcM4l3qYgNQUQ==[/tex]是[tex=2.286x1.286]v2WDxZ26mMX7CSc84SYpyw==[/tex]矩阵,证明:[tex=3.714x1.0]DjIqBEovmshGAzvBAHWBXN/FsmWIncbWgoLHoy9wBkQ=[/tex]的充分必要条件是[tex=0.929x1.0]k4XxnokJDFH17b6cU904x5y0XoeEFbvPcEEIqbrGwnU=[/tex]的每一列都是齐次线性方程组[tex=3.786x1.0]DjIqBEovmshGAzvBAHWBXHZXH7AcwFHxQixHOJxXFUk=[/tex]的解。
- 设[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶矩阵[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex],[tex=0.929x1.0]GTnOCR9hNPsOuxGSyBGTAE4D+bwdNZdKWKqAkIkho7A=[/tex]都是正定矩阵,证明:[tex=3.0x1.143]O8o/cZDTF8ipMqduQHBWgi6pxFN4tTQV4LSHcTIya2I=[/tex]也是正定矩阵.