随机变量ξ=X+Y与η=X-Y不相关的充要条件为______。
A: E(X)=E(Y)
B: D(X)=D(Y)
C: D(X2)=D(Y2)
D: E(X2)+(E(X))2=E(Y2)+(E(Y))2
A: E(X)=E(Y)
B: D(X)=D(Y)
C: D(X2)=D(Y2)
D: E(X2)+(E(X))2=E(Y2)+(E(Y))2
B
举一反三
- 设二维随机变量(X,Y)服从二维正态分布,则随机变量ξ=X+Y与η=X-Y不相关的充分必要条件为______ A: E(X)=E(Y) B: E(X2)-[E(X)]2=E(Y2)-[E(Y)]2 C: E(X2)=E(Y2) D: E(X2)+[E(X)]2=E(Y2)+[E(Y)]2
- 设二随机变量(X,Y)服从二维正态分布,则随机变量U=X+Y与V=X-Y不相关的充分必要条件为( ). A: E(X)=E(Y) B: E(X2)-[E(X)]2=E(Y2)-[E(Y)]2 C: E(X2)=E(Y2) D: E(X2)+[E(X)]2=E(Y2)+[E(Y)]2
- 设二维随机变量(X,Y)服从二维正态分布,则随机变量ξ=X+Y与η:X-Y不相关的充分必要条件为() A: E(X)=E(Y) B: E(X2)-[E(X)]2=E(Y2)-[E(Y)]2 C: E(X2)=E(Y2) D: E(X2)+[E(X)]=E(Y2)+[E(Y)]2
- 设二维随机变量 (X , Y )服从二维正态分布,则随机变量X + Y与X – Y不相关的充要条件为( ) A: E (X ) = E (Y ) B: E (X 2) – [E (X )]2 = E (Y 2 ) – [E (Y )]2 C: E (X 2 ) = E (Y 2) D: E (X 2) + [E (X )]2 = E (Y 2 ) + [E (Y )]2
- 设 (X, Y) 为二维随机变量,则随机变量ξ = X + Y 与η = X − Y 不相关的充分必要条件为() A: E(X<sup>2</sup>) −[E(X)]<sup>2</sup>= E(Y<sup>2</sup>) −[E(Y)]<sup>2</sup>; B: E(X<sup>2</sup>) = E(Y<sup>2</sup>); C: E(X) = E(Y); D: E(X<sup >2</sup>) + [E(X)]<sup >2</sup>= E(Y<sup >2</sup>) + [E(Y)]<sup >2</sup>.
内容
- 0
设随机变量X与Y相互独立,E(X)=E(Y)=μ,D(X)=D(Y)=σ^2,则E(X-Y)^2=
- 1
下列语句语法正确的是( ) A: if x<2*y and x>y then y=x**2 B: if x<2*y : x>y then y=x^2 C: if x<2*y and x>y then y=x2 D: if x<2*y and x>y then y=x^2
- 2
方程$(x^2+1)(y^2-1) + xy y' = 0$的通解为 A: $y^2 = C \frac{e^{-x^2}}{x^2}$ B: $y = C \frac{e^{-x^2}}{x^2}$ C: $y^2 = C \frac{e^{-x^2}}{x^2}+1$ D: $y=C \frac{e^{-x^2}}{x^2}+1$
- 3
假设随机变量X与Y相互独立,[img=151x25]1803a55fac26c89.png[/img]。则下列正确的是( ) A: X+Y~E(2) B: X-Y~E(2) C: min{X,Y}~E(2) D: max{X,Y}~E(2)
- 4
设X与Y相互独立,且E(X)=2,E(Y)=3,D(X)=D(Y)=1,求E((X-Y)^2)=?