设 (X, Y) 为二维随机变量,则随机变量ξ = X + Y 与η = X − Y 不相关的充分必要条件为()
A: E(X2) −[E(X)]2= E(Y2) −[E(Y)]2;
B: E(X2) = E(Y2);
C: E(X) = E(Y);
D: E(X2) + [E(X)]2= E(Y2) + [E(Y)]2.
A: E(X2) −[E(X)]2= E(Y2) −[E(Y)]2;
B: E(X2) = E(Y2);
C: E(X) = E(Y);
D: E(X2) + [E(X)]2= E(Y2) + [E(Y)]2.
举一反三
- 设随机变量X和Y都服从标准正态分布,则( ); A: X+Y服从正态分布 B: X<sup>2</sup>+Y<sup>2</sup>服从χ<sup>2</sup>分布 C: X<sup>2</sup>和Y<sup>2</sup>服从χ<sup>2</sup>分布 D: X<sup>2</sup>/Y<sup>2</sup>服从F分布
- 微分方程xdy-ydx=y<sup>2</sup>dy的通解为()。 A: x=-y<sup>3</sup>-cy B: x=-y<sup>2</sup>+cy C: x=y<sup>2</sup>+cy D: x=y<sup>2</sup>-cy
- 设随机变量X和Y都服从N(0,1)分布,则下列叙述中正确的是()。 A: X+Y~正态分布 B: X<sup>2</sup>+Y<sup>2</sup>~χ<sup>2</sup>分布 C: X<sup>2</sup>和Y<sup>2</sup>都~χ<sup>2</sup>分布 D: X<sup>2</sup>/Y<sup>2</sup>~F分布
- 微分方程xdy-ydx=y<sup>2</sup>dy的通解为()。 A: x=Cy-y<sup>2</sup> B: x=Cy+y<sup>2</sup> C: x=Cy<sup>2</sup>-y D: x=Cy<sup>2</sup>+y
- 设f(x,y)=x[sup]2[/]-y,则f(xy,x+y)=( )。 A: x<sup>2</sup>-x-y B: x<sup>2</sup>y<sup>2</sup>-x-y C: x+y-x<sup>2</sup>y<sup>2</sup> D: (x+y)<sup>2</sup>-xy